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1 Introduction

What determines where we attend and what we perceive in a visually rich
environment? Since we typically cannot process everything that is in our field of
view at once, certain information needs to be selected for further processing. Models
of attentional control often distinguish two aspects: Bottom-up attention (sometimes
referred to as “exogenous attention”) focuses on stimulus characteristics that may
stand out to us, while top-down (or “endogenous”) attention focuses on goal-driven
influences and knowledge of the observer (e.g., Henderson et al., 2009; Itti & Koch,
2001). In this chapter, we focus on top-down guidance of attention and object
perception in scene context; particularly, on top-down guidance that is rooted in
generic scene knowledge—or scene grammar as we will elaborate on later—and
is abstracted away from specific encounters with a scene, but stored in long-term
memory.

Suppose that you are looking for cutlery in a rented accommodation. You would
probably search in the kitchen or in the living room but certainly not in the
bathroom. Once in the kitchen, you would probably readily direct your attention to
the cabinets—it would not be worthwhile to inspect the fridge or the oven. Despite
having a specific goal, certain items may attract your attention, such as a bowl of
fruits or colorful flowers on the kitchen counter. If you found forks, you might expect
to find the knives close by. While viewing the kitchen, you would probably not have
a hard time recognizing various kitchen utensils, even if they were visually small,
occluded or otherwise difficult to identify. In this example, one benefits from context
information, from prior experience with kitchens of all sorts. That is, in the real
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world, objects are hardly ever seen in isolation but typically in similar, repeating
surroundings which allows us to make near-optimal predictions in perception and
goal-directed behavior (Bar, 2004; Oliva & Torralba, 2007; Võ et al., 2019). Figure 1
provides an illustration:While it is difficult to recognize the isolated object in the left
panel, the availability of scene context (right panel) probably helps in determining
the identity of the object (here an electric water kettle).

In this chapter, we will first review how attention is allocated in the real world
from a stimulus-driven perspective. We will then outline important aspects of
attentional guidance during visual search, followed by a section on contextual
influences on object recognition—an integral part of search. In particular, we focus
on what types of contextual information or “ingredients” the visual system utilizes
for object search and recognition, a question that has remained largely unexplored
until recently. To this end, we refer to diverse methodologies (like psychophysics,
eye tracking, neurophysiology, and computational modelling) used at different
degrees of realism (ranging from on-screen experiments, via virtual reality to studies
in the real world). Finally, we will bring the findings together, discussing the relative
contributions of various context ingredients to object search and recognition, as well
as future directions and mutual benefits of human and computer vision research.

2 Attentional Allocation in Real-World Scenes

2.1 The Role of Low-Level Features

The bowl of fruits in our introductory example (see Fig. 1) would be expected based
on the semantic scene context, but might initially stand out to us in terms of low-
level features (e.g., color) that differ from the surroundings (e.g., white kitchen

Fig. 1 While it is difficult to recognize the isolated object in the left panel, the kitchen context
(right panel) may help in determining that the object is an electric water kettle. The kitchen scene
was reproduced and adapted with permission from Lignum Moebel, Germany (https://lignum-
moebel.de)

https://lignum-moebel.de
https://lignum-moebel.de
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counter). Over the last two decades, several computational models of bottom-up,
stimulus-driven attention have been put forth (for reviews, see Borji, 2019; Borji
& Itti, 2013; Krasovskaya & Macinnes, 2019). A seminal early model of attention
that inspired numerous other models is the saliency model by Itti and Koch (2000,
2001). Visual salience is defined as the “distinct subjective perceptual quality which
makes some items in the world stand out from their neighbors and immediately
grab our attention” (Itti, 2007). The model computes a salience map with regions
that are likely attended by the observer based on low-level feature contrast (in
intensity, orientation, and color) across spatial scales, motivated by receptive fields
in the human visual system. Note that, as a proxy for overt visual attention,
researchers often measure fixations and compare the empirical distributions to
model predictions. However, visual attention is in principle not limited to the point
of fixation and can be directed to regions outside of the fovea (commonly referred
to as covert attention). Low-level saliency models have been shown to predict overt
attention above chance under free viewing conditions (i.e., in the absence of a
specific task), with highest predictability found for the first fixation (e.g., Parkhurst
et al., 2002). Interestingly, these models capture where we direct our gaze merely
based on low-level feature contrast, that is, without knowledge of image content or
meaning (e.g., it is not known that the salient spot in the kitchen is a bowl of fruits
or flowers).

2.2 The Role of Mid-Level Features and Objects

While low-level image features certainly play a decisive role for attentional
allocation, it has been questioned whether attention is effectively attracted by such
low-level features or rather higher-level features or objects that are not incorporated
in low-level salience models (Einhäuser et al., 2008; Nuthmann & Henderson, 2010;
Pajak & Nuthmann, 2013; Stoll et al., 2015). Objects often occur in locations
that are salient (Spain & Perona, 2011)—oftentimes they make locations salient
in the first place—and might thus be the driving force in attentional deployment
(Schütt et al., 2019). Stoll et al. (2015) found that a state-of-the-art model of low-
level salience and an object model predicted fixations equally well; however, when
salience was reduced in regions that were relevant in terms of object content, the
object model outperformed the salience model. Nuthmann and Einhäuser (2015)
introduced a novel approach to investigate which image features influence gaze:
Using mixed-effects models, they showed that mid-level features (e.g., edge density)
and higher-level features (e.g., image clutter and segmentation) had a distinct
contribution in gaze prediction as opposed to low-level features. Thus, many
recent models incorporate mid to higher-level features in addition to low-level
features to better predict fixation distributions in scene perception. To this end, deep
neural networks (DNNs) have become increasingly popular and achieve benchmark
performance in gaze prediction nowadays (Borji, 2019). One of the currently best-
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performing networks, DeepGazeII, utilizes high-level features from a DNN trained
on object recognition (Kümmerer et al., 2016).

2.3 The Role of Meaning

The role of scene meaning (or semantic informativeness) in attentional deployment
while viewing real-world scenes has been studied for decades, and was recently
systematically assessed by Henderson and colleagues (Henderson et al., 2018, 2019;
Peacock et al., 2019a, 2019b). For a large number of local scene patches derived
from scene images, they collected ratings of meaningfulness based on how infor-
mative or recognizable the patches were to observers. The authors then generated
meaning maps which represent the spatial distribution of semantic features across a
scene, comparable to a salience map (though not rooted in image-computable fea-
tures). Meaning was shown to predict gaze successfully, as was low-level salience,
but salience did not have a unique contribution when controlling for its correlation
with meaning (Henderson & Hayes, 2017). This finding was replicated when
predicting fixation durations instead of fixation distributions (Henderson & Hayes,
2018), and held across different tasks (Henderson et al., 2018; Rehrig et al., 2020),
even when low-level image salience was highly task-relevant and meaning was not
(Peacock et al., 2019a). However, it has been argued that the success of the meaning
maps approach could be due to high-level image features that are not captured in
classic salience models and could have strongly influenced observer’s ratings of
meaningfulness: DeepGazeII, which incorporates high-level object features, is able
to outperform meaning maps at predicting fixations (Pedziwiatr et al., 2019).

Further, deriving meaning from objects in scenes has been shown to guide atten-
tion such that gaze tends to transition from one object to another object if the items
are semantically related (Hwang et al., 2011; Wu et al., 2014a; for a review, see Wu
et al., 2014b; see also De Groot et al., 2016). Objects that violate the global meaning
of a scene (e.g., a mixer in the bathroom) strongly engage attention; they are
typically looked at longer and more often than consistent objects (e.g., Cornelissen
& Võ, 2017; De Graef et al., 1990; Friedman, 1979; Henderson et al., 1999; Loftus
& Mackworth, 1978; Võ & Henderson, 2009b). While it has been established that
attention can be “stuck” on these inconsistencies once they are spotted—even when
they are irrelevant to one’s current goals (Cornelissen & Võ, 2017, p.1)—it is a
matter of debate whether they attract attention before they are fixated. Some studies
have found semantic inconsistencies to influence initial eye-movements (e.g., the
critical object is fixated earlier than a consistent object) (Becker et al., 2007; Bonitz
& Gordon, 2008; Coco et al., 2019; Loftus & Mackworth, 1978; Nuthmann et al.,
2019; Underwood et al., 2007, 2008; Underwood & Foulsham, 2006), yet other
studies did not find indication for attention capture by inconsistencies (Cornelissen
& Võ, 2017; De Graef et al., 1990; Furtak et al., 2020; Henderson et al., 1999; Võ
& Henderson, 2009b, 2011). These mixed results may be related to characteristics
of the scene stimuli (e.g., line drawings, photographs, or 3D-rendered scenes with
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varying degrees of clutter) and/or more or less controlled characteristics of the
critical objects (e.g., size, eccentricity, salience).

With the rise of fully labeled image databases like LabelMe (Russell et al., 2008)
assessing the semantic relatedness between objects and their scene contexts as well
as inter-object relatedness has become easier. For instance, using graph theory by
treating objects as nodes and assigning different weights to their connections has
provided new avenues to determine clusters of semantically related objects within
scenes—which we have started to call “phrases”—or prominent objects therein that
anchor predictions about the location and identity of other objects nearby (for more
details, see Sect. 4.3; Boettcher et al., 2018; for reviews, see Võ, 2021; Võ et al.,
2019). Objects that do not fit their context tend to be regarded as surprising or
interesting and can affect where we attend to in scenes.

2.4 The Role of Interestingness and Surprise

While the role of image features has been studied extensively (for reviews, see
Borji, 2019; Borji & Itti, 2013; Krasovskaya & Macinnes, 2019), relatively little
is known about how other factors such as interestingness or surprise modulate
attentional deployment. Elazary and Itti (2008) proposed that interesting objects
are in fact visually salient: Observers who contributed to the LabelMe database—a
large collection of scenes with object annotations (Russell et al., 2008)—tended to
label those objects that were salient even though they were free to choose which
objects to label. In another study, when explicitly asked which scene locations
are interesting, the choice of locations was largely similar across observers and
correlated with fixation distributions of other observers (Masciocchi et al., 2009).
Behavioral judgements and eye movements were also correlated with predictions
of a salience model, yet not as highly as one would expect if salience was the only
driving factor of interestingness. The authors concluded that there are both bottom-
up and top-down influences on what we perceive as interesting and where we attend
in an image (see also Borji et al., 2013; Onat et al., 2014). Other studies have shown
that, beyond an influence of low-level salience, attentional allocation is modulated
by the affective-motivational impact of objects or their importance for the scene (’t
Hart et al., 2013; Schomaker et al., 2017), and that attention is attracted by surprising
image locations in a Bayesian framework (e.g., Itti & Baldi, 2005). Moreover, some
types of objects hold a special status: Text and faces, for instance, have been shown
to greatly attract attention in scenes (see Wu et al., 2014b).

Taken together, inspired by early models of low-level salience, more recent
research highlights the importance of higher-level features and indicates that
attention in scenes is largely object-based—with some objects attracting and/or
engaging attention more than others. While DNNs achieve benchmark performance
in a variety of tasks nowadays and have become increasingly popular in fixation
prediction, more research is needed to see how they will further our understanding
of human attention mechanisms. Further, it will be crucial to shed more light on
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when during scene viewing various features exert influence on attentional allocation.
Schütt et al. (2019) disentangled the contribution of low and higher-level features
to fixation distributions over time, showing that the influence of low-level features
is mostly limited to the first fixation and that higher-level features, as incorporated
in DeepGazeII, predict fixations better starting 200 ms after stimulus onset. Despite
the popularity of DNNs, a shortcoming of data-driven approaches is that they do
not capture some aspects of human visual attention such as singleton (or “odd one
out”) detection in artificial stimuli (even when the training data is adjusted, e.g.,
Kotseruba et al., 2020).

3 Guidance of Attention during Real-World Search

While the processing of image features can certainly play a role in where we attend,
especially when free-viewing scenes, we are rarely ever mindlessly looking around.
Instead, we tend to be driven by various agendas and task demands, one of which
is the need to locate something or somebody. The interplay of bottom-up image
features and more cognitively based, top-down influences during search is complex.
As Henderson (2007) put it: “In a sense, we can think of fixation as either being
“pulled” to a particular scene location by the visual properties at that location, or
“pushed” to a particular location by cognitive factors related to what we know and
what we are trying to accomplish” (p. 219). However, it should be noted that it is
not always straightforward to strictly delineate between bottom-up and top-down
influences (Awh et al., 2012; see also Teufel & Fletcher, 2020); we are certainly not
claiming that the aspects presented here are one or the other.

Traditionally, visual search was studied using simple artificial displays of
randomly arranged targets and distractors (e.g., “find the letter T among several
instances of the letter L”). The main measure was—and still is— reaction time (RT)
as a function of set size (i.e., the number of items in the display). With increasing set
size, RT is consistently longer in such a task, in equal steps, indicating that attention
is serially deployed to one item after another (see Wolfe, 2020; Wolfe & Horowitz,
2017). However, in some cases, it is not necessary to inspect all items in the display:
In “classic guided search” theory, a limited set of target features (e.g., color, motion,
orientation, size) can guide attention in a top-down manner, narrowing down the
number of possible items (for reviews, see Wolfe, 2020; Wolfe et al., 2011b; Wolfe
& Horowitz, 2017). For instance, when looking for a red “T” among some red and
some black “L”s one can disregard all black items. To this end, “feature binding”
takes place: The shape and the color of the target are bound together in order to
reject distractors as well as recognize the target(s). While the field has learned a
lot from these types of experiments that mostly used meaningless stimuli, search in
real-world scenes seems to be strongly influenced by other guiding factors.

Scenes are not random assemblies of features but most often structured and
meaningful, which allows us to perform searches with remarkable efficiency. For
instance, when looking for a teddy in the bedroom, fixations tend to cluster around
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the bed even if the target is not present and cannot guide attention by means of
its features (see Võ et al., 2019). Search for objects in scenes appears to be much
more efficient than search for isolated objects in random arrays, although it can be
challenging to define a scene’s set size adequately (see Wolfe et al., 2011a). As
proposed in the cognitive relevance framework, search in scenes is mainly guided
by cognitive factors such as prior knowledge and current goals (Henderson et al.,
2009; for a review, see Wolfe et al., 2011b).

What makes search in the real world so efficient despite the wealth and
complexity of information contained in the visual input? While no one would
doubt that scene context aids object search, relatively little is known about which
“ingredients” of real-world scenes effectively guide attention, what their relative
contributions are, and when they contribute during the search. In the following, we
attempt to shed more light on these ingredients.

3.1 The Role of Scene Gist

One line of work addressed the question of whether an initial brief glance at a scene
influences attentional allocation. Within a fraction of a second, observers can obtain
the “gist” of a scene, a coarse representation of its spatial properties and meaning
that does not require the selection of individual objects (Greene & Oliva, 2009a,
2009b; Rousselet et al., 2005). While there is no universal account of scene gist,
many definitions (including ours), state that gist allows the categorization of scenes
at a basic level. For instance, one may categorize a scene as a kitchen and tell that it
comprises something like a kitchen counter but not yet grasp that there are a toaster
and a mixer resting on any of the surfaces. That is, one may “see the forest without
representing the trees” (Greene & Oliva, 2009a). A brief glance in the range of
milliseconds is too short to make a saccade and thus to foveate selected parts of the
scene in order to perceive them with fine detail. In fact, scene gist recognition does
not depend on the high visual acuity of the fovea; it can be achieved even when the
scene is blurred or when only peripheral information is available (e.g., Loschky et
al., 2019). One fundamental aspect of scene gist is spatial layout information. As
demonstrated in the spatial envelope model and supported by behavioral studies,
scenes can be categorized based on their global properties, such as the global shape,
without the need to identify any objects in the scene (Oliva & Torralba, 2001, 2006).
This way of processing the scene is considered to be largely feed-forward and, in
terms of search guidance, is assumed to take place on a “nonselective pathway”
that parallels a “selective pathway” which binds features and recognizes individual
objects (Wolfe et al., 2011b). Note that objects can also be an important source
of information for scene categorization (MacEvoy & Epstein, 2011), especially for
indoor scenes that are not always easily distinguishable in terms of their global
properties.

To investigate how a brief glance at a scene guides search behavior, researchers
have used the flash-preview moving window paradigm (Castelhano & Henderson,
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2007; Võ & Henderson, 2010, 2011; Võ & Schneider, 2010; Võ & Wolfe, 2015): It
initiates with a brief preview of a scene, followed by a target word and a search phase
in which observers look for the target object in the original scene but through a gaze-
contingent window that only reveals a small area of the scene at the current point of
fixation. Given that the scene as a whole is not perceived during the search phase,
this paradigm allows experimenters to assess the contribution of the scene’s initial
global percept to visual search. Note, however, that this contribution may be weaker
under more natural search conditions in which the entire scene can be processed
online during the search as well (see Võ & Wolfe, 2015). A scene’s preview has
been shown to influence visual search consistently in these studies, even when it was
as short as 50 ms (Võ & Henderson, 2010). Võ and Schneider (2010) manipulated
the type of context information that was available in the scene preview, selectively
preserving either the global scene background or local objects (for an illustration,
see Fig. 2). The availability of the scene background, conveying the spatial layout
of the scene, resulted in faster detection of the targets and required fewer fixations
compared to a control condition, whereas a preview of local objects did not facilitate
search. Thus, a coarse representation of a scene’s structure and meaning appears to
already guide visual search effectively. Interestingly, knowing only the category of
the scene does not seem to be sufficient, as was shown when a searched scene was

Fig. 2 Illustration of a kitchen scene (top left) that can be divided into the background (top right),
local objects (bottom left) as well as an anchor object (bottom right)
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primed by a different scene exemplar from the same category or by a word label of
the category. Yet, a scene that is semantically inconsistent with a target (e.g., a mug
of paint brushes in a bedroom) can facilitate search given that the object occurs in
a reasonable location (Castelhano & Heaven, 2011, for a review see Castelhano &
Krzyś, 2020).

The spatial layout of a scene can provide us with important constraints regarding
the location of objects. For example, the occurrence of objects is constrained by the
laws of physics such that objects rest on surfaces rather than hovering in the air.
Even when we do not fully grasp a scene’s meaning, we may be able to tell where
its major surfaces lie (e.g., kitchen counters, tables, etc.) (see Fig. 2) and/or where
the sky and the horizon are located. Moreover, two objects usually do not occupy the
same physical space (Biederman et al., 1982), and we know where certain objects
typically occur (e.g., a rug is often located on the floor) (Kaiser & Cichy, 2018;
Neider & Zelinsky, 2006). Incorporating likely vertical object locations in a low-
level salience model can significantly improve gaze prediction, as was demonstrated
in the contextual guidance model (see Oliva & Torralba, 2006). More recently, the
surface guidance framework was introduced, proposing that attention is allocated
to surfaces in the scene that are related to the target object (Castelhano & Heaven,
2011; Pereira & Castelhano, 2014, 2019; for a review, see Castelhano & Krzyś,
2020).

3.2 The Role of Local Objects

Another line of work investigated the influence that selected parts of the scene,
specifically objects, have on attentional allocation. In a naturalistic search task,
Mack and Eckstein (2011) instructed participants to search for objects on tables
while wearing mobile eye tracking glasses. The target object (e.g., a fork) was
either located near a so-called cue object with which it would likely co-occur in
natural scenes (e.g., a plate) or elsewhere (close to other objects). Targets were
found faster if they were located near cue objects, and cue objects were fixated
more frequently than other objects surrounding the targets, suggesting that object
co-occurrence in the real world can boost search performance. In another study,
in which participants inspected scene images or searched for targets therein, the
LabelMe database of scenes with object annotations was used to determine the
semantic relatedness of the currently fixated object to other objects in the scene
or to the search target (Hwang et al., 2011). Gaze was shown to transition more
likely to objects that are semantically related to the currently fixated object, even
when the objects were not in close proximity. Moreover, the search data revealed
that the influence of target-based semantic guidance increased throughout the trial.
The finding of likely transitioning between related objects was replicated even when
the objects were cropped (removed) from the scenes but not when discarding spatial
dependencies among the cropped objects by re-arranging them (Wu et al., 2014a).
When a preview of the original scene was added in order to provide gist information,
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there was no indication of increased semantic guidance. Moreover, there is evidence
that the functional arrangement of objects influences gaze direction in the absence
of scene context (e.g., a key that is arranged such that it can or cannot be inserted in a
lock) (Clement et al., 2019). In object arrays, semantic information can be extracted
extrafoveally and can guide even the first eye movement during search (Nuthmann
et al., 2019). Taken together, both the semantic relation of objects as well as their
spatial dependencies appear to be relevant for attentional allocation during search.

3.3 The Role of Anchor Objects

There seem to be certain objects that predict not only the occurrence, but particularly
the location of other objects within a scene. Boettcher et al. (2018) explored the
role of spatial predictions in object-based search guidance, introducing the concept
of anchor objects. Anchors are typically large, static objects (i.e., they are rarely
moved) that give rise to strong predictions regarding the identity and location of
local objects clustering around them (e.g., the table may predict the position of a
chair, a glass of water, and the salt). By contrast, local objects do not necessarily
predict the location of other local objects (e.g., when searching for the salt, the
location of a glass might not be that informative) (see Fig. 2). Using the LabelMe
database, the concept of anchor objects was operationalized through four factors:
variance of spatial location, frequency of co-occurrence, object-to-object distance,
and clustering of objects (see Boettcher et al., 2018; c.f. Võ et al., 2019). In a
series of eye tracking experiments, observers searched for target objects in images
of 3D-rendered scenes (e.g., bathroom) that were manipulated to either contain a
target-relevant anchor (e.g., shower) or a substitute object that was chosen to also be
semantically consistent with the scene and of similar size (e.g., cabinet). Compared
to the substitute objects, relevant anchors affected search performance such that
there was a reduction in reaction time, scene coverage, and the time to transition
from the anchor to the target. In line with this, in a recent virtual reality experiment,
participants were slower at locating target objects when anchors were concealed
by grey cuboids of similar dimensions compared to when they were fully visible
(Helbing et al., 2020). Randomly re-arranging the anchors (or cuboids) resulted
in an opposite effect, that is, targets were located faster in the cuboid condition,
suggesting that both the identity and spatial predictions of anchors are crucial for
their ability to guide search. Note that these inherent spatial predictions distinguish
anchor objects from the notion of diagnostic objects (e.g., MacEvoy & Epstein,
2011) which may be important for conveying scene meaning and facilitating scene
categorization, but need not yield precise predictions of the occurrence of other
objects (Võ et al., 2019). It seems likely that anchor objects can be identified even
in the periphery (see Koehler & Eckstein, 2017b, for a demonstration of peripheral
extraction of object cues) and thus they might provide an effective way to locate
smaller targets, building a bridge between the global scene and local objects.
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3.4 Scene Grammar

Taken together, while scene gist yields an initial coarse representation of the scene’s
structure and meaning that can already effectively narrow down the search space,
selected objects allow for a more fine-grained type of guidance (see also Wolfe
et al., 2011b). Recent studies on the role of anchor objects showed that objects
are not all equal in their ability to guide search. Rather, scenes appear to be
hierarchically organized, with anchors being the core of so-called “phrases” that
constitute meaningful subunits within a scene (e.g., the “shower phrase“ versus the
“toilet phrase”). Within these phrases, anchors hold stronger predictions about other
local objects therein (e.g., the shampoo is in the shower and the toilet brush next to
the toilet). When searching for the toilet paper in a bathroom, one can substantially
reduce search time (and stress!) by outright avoiding to search the non-relevant
shower and sink phrases.

While some of the regularities inherent in scenes have already been described
decades ago (e.g., Biederman et al., 1982; Boyce & Pollatsek, 1992; Palmer, 1975),
they are nowadays directly measurable using large-scale annotated databases and
descriptive statistics (Greene, 2013, 2016; Russell et al., 2008). In analogy to the
language domain, we have been referring to implicitly acquired knowledge of
various regularities in scenes regarding what objects tend to be where as scene
grammar (for reviews, see Võ, 2021; Võ et al., 2019; Võ & Wolfe, 2015). In
language, semantics refers to conceptual relations between words while syntax
describes the rules of sentence structure. Accordingly, we have used the terms scene
semantics and syntax to describe the meaningfulness of object-scene relations (e.g.,
a pot belongs in the kitchen, not in the bathroom) or structural nature of these
relations (the pot belongs on top of the stove, not on the floor), respectively (Võ
& Henderson, 2009b). Violations of scene grammar have been shown to impede
search performance and strongly influence eye-movements (e.g., Võ & Henderson,
2011). For instance, both semantic and syntactic violations are typically fixated
longer and more often than their consistent counterparts (e.g., Võ & Henderson,
2009a). When objects are positioned inconsistently in a scene, it also takes longer
to decide whether an object is the target or not once it is fixated (e.g., Võ & Wolfe,
2013b). Thus, contextual regularities may not only affect search guidance but also
object recognition at various stages of the search.

4 Object Recognition in Scene Context

Object recognition is an integral part of search: Distractors need to be evaluated
as to whether they are target candidates or not, and eventually the target needs to
be identified and matched against the search template (for more details, see Sect.
5). In the following, we will outline how scene context affects object perception.
Contextual influences on object perception were studied extensively for decades—
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though mostly isolated from visual search—using behavioral measures, and more
recently also neurophysiological methods. One of the core questions of this line of
work has been at what stage(s) of object processing contextual modulation occurs.

4.1 Behavioral Work

Traditionally, the influence of scene context on object processing was studied using
line drawings (Biederman et al., 1982; Boyce et al., 1989; Boyce & Pollatsek, 1992;
Hollingworth &Henderson, 1998, 1999; Palmer, 1975). In Biederman’s et al. (1982)
influential object detection paradigm, observers were shown a target word (e.g., fire
hydrant), followed by a briefly presented line drawing of a scene and a pattern mask
with a location cue. Observers were asked if they had or had not seen the target
object in the cued location. Target objects that were consistent with the scene context
(e.g., a fire hydrant on the street) were detected faster and more accurately than
semantically or syntactically inconsistent objects (e.g., a fire hydrant in the kitchen
or a fire hydrant positioned in the air above a street, respectively) (see also Boyce
et al., 1989), or other forms of violations (objects in unlikely rather than impossible
locations, or objects with abnormal sizes). However, the consistency advantage was
not replicated when taking response bias into account (Hollingworth & Henderson,
1998, 1999), which lent support to the functional isolation model, proposing that
there is no interaction of scene and object processing on a perceptual level.

More recently, researchers have used color or grayscale photographs of scenes
and an object naming task to probe the role of context in object recognition
(Davenport & Potter, 2004; Lauer et al., 2018; Lauer et al., 2020a; Munneke et
al., 2013; Sastyin et al., 2015). Observers were briefly presented with a scene
containing a consistent or inconsistent object cutout in the foreground (or an isolated
object superimposed on a scene; Lauer et al., 2018, 2020a, 2020b), followed by
a perceptual mask and a response window, where they typed in the name of the
object. In this paradigm, which is not prone to response bias and overcomes some
limitations of early behavioral work (see Davenport & Potter, 2004), consistent
objects were named more accurately than inconsistent objects across studies. Here,
we refer to this effect as scene-to-object consistency effect. Moreover, scenes are
named more accurately if they contain a consistent versus inconsistent object in the
foreground (object-to-scene consistency effect), suggesting that objects and scenes
are processed interactively (Davenport & Potter, 2004; see also Davenport, 2007;
Leroy et al., 2020). The scene-to-object consistency effect cannot be explained
by mere low-level feature overlap between the context and the target, nor does it
depend on overt attention being directed to the object (Leroy et al., 2020; Munneke
et al., 2013). Interestingly, the magnitude of the scene-to-object consistency effect is
modulated by viewpoint: Objects that are seen from a canonical (easy) angle evoke a
weaker effect than objects seen from a non-canonical (difficult) angle (Sastyin et al.,
2015). Contextual modulation also depends on the displayed size of the target, with
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stronger effects seen for smaller objects that are more difficult to interpret (Zhang et
al., 2020).

In the model of contextual facilitation (Bar, 2004), the gist of a scene rapidly
activates scene schemata and yields predictions of associated objects that are
matched against incoming information of the target, boosting its identification.
We have recently probed if the scene-to-object consistency effect reflects such
facilitation of object processing on a perceptual level by contrasting accuracy for
isolated objects superimposed on scenes with accuracy for objects on unrecog-
nizable scrambled scenes (baseline) (Lauer et al., 2020a). Consistent objects on
scenes were named more accurately than consistent objects on scrambled scenes,
suggesting that scene context indeed facilitated object recognition. Moreover, incon-
sistent objects on scenes were named less accurately than inconsistent objects on
scrambled scenes, suggesting that the consistency manipulation also interfered with
performance, either on a perceptual stage (e.g., by yielding misleading predictions)
or a post-perceptual stage (e.g., through a mismatch detection that interfered with
performance). It should be noted, however, that some other studies did not find
facilitation of object recognition when the scene context was present versus absent
(Davenport & Potter, 2004; Lauer et al., 2018; Roux-Sibilon et al., 2019). Possibly,
facilitation effects are not always robust in the case of salient foreground objects
or isolated objects for which figure-ground segmentation is arguably easy. In some
paradigms, a strong segmentation advantage in the baseline (no-context condition)
may also contribute to the absence of facilitation effects (see Davenport & Potter,
2004). Under more natural conditions—when objects are embedded in scenes
and segmentation demands are also present in the baseline (e.g., by providing
minimal context around the target)—facilitation was repeatedly shown, particularly
pronounced for smaller targets that are more difficult to interpret (for extensive
demonstrations, see Zhang et al., 2020; see also Brandman & Peelen, 2017). Besides
distinct segmentation demands in the case of embedded objects, these objects also
differ from isolated objects such that the context can yield spatial predictions and
estimates of the target’s size, potentially increasing the magnitude of contextual
facilitation of object recognition.

In another recent study, objects were either presented within a scene or outside of
it on the same horizontal or vertical plane (either unilateral or bilateral) (Leroy et al.,
2020). Across manipulations, consistent objects and consistent scenes were named
more accurately than inconsistent objects and scenes, respectively, confirming the
reciprocal nature of the object-scene consistency effect. Given that contextual
modulation was robust even when objects and scenes were not embedded in the
same percept, these findings also suggest that, rather than arising at the earliest
stages of object processing, scene context effects may occur at the stage of matching
visual information with prior knowledge.
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4.2 Neurophysiological Work

Context effects on object processing have also been investigated in neurophysio-
logical studies, using electroencephalography. Specifically, event-related potentials
(ERPs) provide a temporally precise measure that can track context effects online
during stimulus exposure. The most widely studied context-sensitive ERP com-
ponent is the N400—a negative deflection that peaks about 400 ms post stimulus
onset—which was originally reported in the language domain: Sentences with
a semantically inconsistent versus consistent word typically evoke a centrally
distributed N400 effect, suggesting an impedance of semantic access (Kutas &
Hillyard, 1980, 1983; for a review, see Kutas & Federmeier, 2011). In the scene
perception domain, consistent versus inconsistent objects in (or superimposed on)
scenes have been shown to evoke an N400 response with a comparable time
course and topography (Draschkow et al., 2018; Ganis & Kutas, 2003; Lauer et
al., 2018; Lauer et al., 2020a; Mudrik et al., 2010, 2014; Truman & Mudrik,
2018; Võ & Wolfe, 2013a; Zucker & Mudrik, 2019), indicating impeded access
or integration of an object in a semantically inconsistent scene context (Mudrik et
al., 2010, 2014). Moreover, across those studies that used scene stimuli, semantic
consistency manipulations evoked an earlier negativity with a sometimes more
frontal maximum known as N300 (but see Ganis & Kutas, 2003). This component
has been suggested to reflect context effects on a more perceptual level, before
object identification is completed (e.g., Mudrik et al., 2010, 2014). Specifically,
it may reflect the difficulty of matching incoming information of the target with
(misleading) predictions yielded by the inconsistent scene context. While it has
been established that scene context can modulate object processing before object
identification is completed (Lauer et al., 2020; Leroy et al., 2020; Truman &Mudrik,
2018; see also Brandman & Peelen, 2017), it is still debated whether the N300/N400
components are actually distinguishable in terms of the underlying processes or
not: In a recent study from our laboratory, the two components were found to
widely share neuronal activity patterns in a time-generalized decoding analysis
(Draschkow et al., 2018). As opposed to semantic violations in scenes, syntactic
violations (e.g., a towel on the bathroom floor) do not evoke N300/N400 effects but
a later positivity that is comparable to the P600 frequently reported for grammatical
violations in language (Võ & Wolfe, 2013a). A differential response to structural,
“syntactic” inconsistencies has also been found in comic strips (Cohn et al., 2014)
and action sequences (Maffongelli et al., 2015). Thus, the brain seems to distinguish
the processing of object-scene relations in terms of their meaning and structural
nature.

Where is scene meaning processed in the brain, and where does it influence
object perception? In a functional magnetic resonance imaging (fMRI) experiment,
Brandman and Peelen (2017) presented observers with isolated degraded (i.e.
pixelated) objects, degraded objects in scenes, or scenes without any target objects,
and found indication of contextual facilitation in the visual cortex (specifically
in regions lateral occipital and posterior fusiform sulcus): Decoding accuracy for
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degraded objects in scenes exceeded accuracies for the other two conditions in a
supra-additive manner, that is, it was greater than the sum of accuracies for these
conditions. Interestingly, the effect of contextual facilitation was correlated with
activity in regions that are crucial for scene processing (e.g., the parahippocampal
place area and the retrosplenial cortex) (for a review on scene-selective regions
and their functions, see Epstein & Baker, 2019). Magnetencephalography (MEG)
data revealed that supra-additive facilitation emerged around 320 ms post stimulus
onset, which is relatively late compared to a feedforward type of object processing
in the absence of scene context influences (Cichy et al., 2014). It should be
noted that the magnitude of contextual facilitation appears to depend on the visual
characteristics of the target: On the behavioral level, facilitation of object detection
was correlated with object ambiguity, with reduced facilitation seen for easier
to identify, intact objects. In line with previous studies, these findings suggest
that contextual modulation can arise on a perceptual level, and point to separate
scene and object processing pathways that may interact in the visual cortex.
Another recent study complemented these findings by showing signs of contextual
facilitation in scene-selective areas when presenting degraded scenes with intact
objects (Brandman & Peelen, 2019). Besides a reciprocal type of object-scene
facilitation, there is also evidence of multimodal facilitation of object processing
through auditory and semantic cues (Brandman et al., 2019).

Taken together, recent behavioral and neurophysiological work suggests that
scene and object processing are not functionally isolated but that there are reciprocal
influences facilitating perception, especially when the target stimulus is difficult to
interpret.

4.3 Which Scene Ingredients Affect Object Processing?

Over the last few decades, numerous studies have demonstrated that scene context
influences object perception, however, it was hardly ever asked which context
ingredients the visual system actually utilizes, and at which time points they are
relevant. The few studies that have probed individual scene properties are outlined
below, grouped as studies employing global or local manipulations (affecting the
context as a whole or parts of it, respectively).

Global influences on object processing. In a behavioral study, Brady et al.
(2017) briefly presented observers with an object primed by either a grayscale scene
or a texturized scene with a similar spatial distribution of orientations and spatial
frequencies, preserving the global shape of the scene but no recognizable objects
(Oliva & Torralba, 2006) (see Fig. 3). Objects primed by a semantically consistent
scene were named more accurately than objects primed by an inconsistent scene.
Critically, a similar but weaker scene-to-object consistency effect was found for
texturized scenes, indicating that global scene properties—specifically spatial layout
information—can modulate object recognition even in the absence of semantic
object information. This finding is in line with studies highlighting the importance of
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Fig. 3 Illustration of global context manipulations. From top left to bottom right: original scene,
inverted scene, blurred scene, context area, jigsaw 4 × 4, material, layout texture (Brady et al.,
2017), scene texture (Lauer et al., 2018), phase-scrambled scene. Note that the images only serve
for illustration purposes; they are not a reproduction of the stimuli and parameters used in original
studies

global scene properties for rapid scene understanding and categorization (Greene &
Oliva, 2009a, 2009b; Joubert et al., 2007; Oliva & Torralba, 2001, 2006; Rousselet
et al., 2005).

In a related study from our group, we presented consistent and inconsistent
thumbnail objects superimposed on colored scenes, scene textures, or scrambled
scenes (color controls) (Lauer et al., 2018). Our way of texturizing the scenes
was different such that we preserved global scene summary statistics (including
first to second order statistics as well as magnitude and phase correlation; see
Portilla & Simoncelli, 2000) while discarding object semantics and spatial layout
information (see Fig. 3). For scenes, we found a consistency effect at the behavioral
level as well as an N300/N400 effect in ERPs. For textures, we found a non-
significant trend in the same direction at the behavioral level as well as a significant
N300/N400 response with a comparable time course, though less pronounced.
Scrambled scenes, that retained color characteristics of the original scenes, did not
show such effects. Thus, low-level scene statistics, as preserved in the textures, may
modulate object processing even in the absence of spatial layout information while
mere color information appears to be insufficient. It should be noted, however, that
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there was no indication of facilitation at the behavioral level, neither for scenes nor
for textures, suggesting that the context effects may have been driven by interference
in this study. By contrast, Zhang et al. (2020) found strong facilitation for objects
embedded in scenes but still no facilitation for object cutouts on textures: Accuracy
was even slightly higher in the baseline (minimal texture context) compared to
a condition with full-size texture context. Note that there was no consistency
manipulation in this study. A computer vision model (for more detail, see Sect. 5.2)
was able to achieve higher accuracy for objects on textures than in the baseline, yet
only when the target objects were small, and the facilitation effect was considerably
weaker than the one found for original scenes.

Moreover, recent unpublished data from our laboratory suggests that objects
in the context of global material backgrounds (e.g., a chair on wood vs. chair on
water) (see Fig. 3) but not in the context of scrambled materials (color controls)
yield a marginal consistency effect on the behavioral level as well as N300/N400
responses that are comparable to those found for scenes albeit weaker. In another
study, we explored the role of object and scene orientation in the scene consistency
effect (Lauer et al., 2020a). Specifically, we used inversion, a global manipulation
that preserves low-level image properties (except for phase) but may interfere with
semantic processing (see Fig. 3). Behaviorally and in ERPs, we found indication
that upright scenes modulate the processing of both upright and inverted objects but
that inverted scenes only modulate the processing of inverted objects. Corroborated
by a later occurrence of ERP effects for inverted versus upright scenes, we argued
that scene inversion may interfere with rapid scene gist-recognition, resulting in a
later emergence of contextual influences on object processing.

Further, the amount of visual context that is available to the observer (quantified
as revealed image area without the target divided by the target’s size) was shown to
strongly influence object recognition performance (illustrated in Fig. 3); facilitation
was particularly strong in the case of small, difficult to perceive targets (Zhang
et al., 2020). Moreover, contextual modulation by full scenes was robust even
when the image was moderately blurred (Gaussian with M = 0, SD ≤ 8, image
size= 1024× 1280 pixels) (see Fig. 3 for an illustration) but not when it was blurred
more strongly (SD > 8, see Zhang et al., 2020), suggesting that context effects do
not depend on fine detail conveyed by high spatial frequencies. In addition, the
role of global spatial configuration of scene parts was investigated. To this end,
full scenes were divided in equal parts (2 × 2, 4 × 4 or 8 × 8 “jigsaw”) that
were randomly re-arranged while the part that contained the target remained in
its original position (see Fig. 3). Intact configuration facilitated object recognition
compared to a minimal context (control) condition. There was also an increase in
accuracy compared to the inconsistent 4 × 4 and 8 × 8 configurations; however,
the inconsistent 2 × 2 configuration resulted in a similar performance, possibly
indicating that large scene parts already convey sufficient context information even
when the global configuration of the scene is inconsistent.

The role of peripheral vision in foveal object recognition was explored by Roux-
Sibilon et al. (2019). Objects surrounded by a semantically consistent peripheral
scene context (beyond 6 or 8 degrees) were categorized faster than those surrounded
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by an inconsistent context when there was a preview of the peripheral scene.
Moreover, altering the phase coherence of the targets resulted in a lower visibility
threshold for consistent objects than for inconsistent ones. The context effects were
not observed in the case of phase-scrambled peripheral scenes, maintaining the
power spectrum but no scene summary statistics or shape information (see Brady
et al., 2017; Lauer et al., 2018).

Taken together, these studies indicate that there are global influences of context
on object processing which do not depend on selected parts of the context but rather
on a coarse representation of context as a whole. In the following, we will explore
the role of more local influences on object processing.

Local influences on object processing. One type of local information that may
be relevant for object processing is the presence of other objects. A number of
studies have manipulated semantic object-to-object relation in the absence of scene
context, for example, by priming a target object with a related or unrelated object,
or by simultaneously presenting a target with surrounding object(s). An influence of
relatedness was frequently found on the behavioral level (e.g., Auckland et al., 2007;
Henderson et al., 1987) as well as on the neuronal level (e.g., Barrett & Rugg, 1990;
Kovalenko et al., 2012; Li et al., 2019; McPherson & Holcomb, 1999). Besides
semantic relatedness, spatial object-to-object relation has been shown to modulate
object processing. For instance, two related objects are named more accurately or
classified faster if their spatial arrangement is typical compared to atypical (e.g., a
lamp on a desk vs. a lamp under a desk, respectively), given that both objects are
attended (Gronau & Shachar, 2014; Roberts & Humphreys, 2011; see also Gronau,
2020). Moreover, there is electrophysiological evidence that semantic relatedness
and spatial relation interacts in object processing (Quek & Peelen, 2020). However,
the role of these object-to-object effects in the presence of scene context—in the
presence of other visual information—is yet to be explored.

Only two behavioral studies, to our knowledge, have jointly investigated the
influence of scene background and objects. One study found an influence of scene
background on object detection but no influence of relatedness among the (five)
objects in the scene (Boyce et al., 1989). However, the absence of a local context
effect in this study may have been due to characteristics of the stimuli (e.g.,
line drawings of scenes with small objects), as pointed out by Davenport (2007).
In a more recent object naming experiment, observers were presented with two
foreground objects, either related or unrelated, in a scene that was either consistent
with both objects, one object, or neither. Scene-to-object consistency resulted in
higher accuracy, as did object-to-object relatedness, without interaction of the two
variables (Davenport, 2007). In a related study from our laboratory, we explored
the temporal dynamics of these types of context effects using EEG (Lauer et
al., 2020b). We only found N300/N400 ERP responses when both objects were
unrelated and inconsistent with the scene in comparison to all other conditions;
all other possible comparisons were not significant, indicating that one congurent
relation of an object with either the scene or the neighboring object is sufficient
to eliminate the N300/N400 inconsistency effect in this type of paradigm. Thus,
we found some indication of both global and local context effects, with no apparent
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difference in the timeline, in accordance with an interactive view of scene perception
(Davenport & Potter, 2004). It should be noted that in these studies, the background
scenes contained objects that may have contributed to the context effects. Moreover,
in our study, the critical objects were salient and close to the point of fixation.
Future studies might want to assess the influence of other local scene properties
and viewing conditions.

5 Concluding Remarks and Future Directions

Although visual search and object recognition are typically two distinct research
areas with varying experimental setups, in the following, we attempt to bring
the findings outlined in this chapter together, pointing out some similarities and
apparent differences between the two domains. Further, we will discuss the question
of relative contributions of context ingredients, and conclude with a section on
reciprocal benefits of human and computer vision research.

To begin with, visual search usually includes object recognition at various stages.
For instance, every distractor needs to be evaluated as to whether it is a target
candidate or not. Once the target is foveated this critical object needs to be identified
and matched against the search template. Thus, benefits of scene context are not
only due to more efficient guidance by scene grammar, but likely also due to
improved object recognition leading to faster disengagement of distractors and
target identification—the latter is usually measured as decision time (i.e., the time
from initial target fixation to button press indicating the termination of search).
Figure 4 provides an illustration of a search for a toaster in the kitchen.

Accordingly, evidence from both literatures suggests that scene gist, which can
be inferred from the spatial layout of a scene (c.f. Võ & Wolfe, 2015), can readily
modulate both search performance and object processing. This type of context
information is available very rapidly and allows narrowing down search space (e.g.,
we would search for a toaster on that large horizontal surface in what appears to be
a kitchen) or the number of possible object identities (e.g., the item is probably an
electronic device, not a rock), respectively. In fact, even 50 ms of exposure to context
is sufficient to affect search (Võ & Henderson, 2010) as well as object recognition
(Zhang et al., 2020)—this number can even be lower in the absence of backward
masking (e.g., 25 ms in the case of object recognition, Zhang et al., 2020).

Moreover, it has been established that local properties of a scene, specifically
co-occurring objects, are an important source of information for target localization
as well as identification. To this end, both the semantic relatedness of co-occurring
local objects as well as their spatial dependencies are utilized. In a recent virtual
reality study from our laboratory, anchor objects in scenes not only guided search
but also significantly reduced the decision time once the target object was fixated,
compared to a condition in which the anchors were concealed by gray cuboids
(Helbing et al., 2020).
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Fig. 4 Illustration of a search for a toaster in the kitchen which not only benefits from contextual
guidance of eye-movements but also from faster disengagement of distractors as well as enhanced
recognition of the target. Blue arrows and circles illustrate an exemplary scan path and fixations,
respectively. Thought bubbles indicate successful object identification and matching against the
search template

5.1 Relative Contributions of Context Ingredients

While several context ingredients that modulate search and/or object processing
have been identified, relatively little is known about the relative contributions of
these ingredients, especially over time. Some work has focused on assessing the
relative importance of scene background and object content in visual search, as
outlined below. While a brief glance at a scene background without objects was
shown to facilitate search, no facilitation was found when local objects were briefly
shown instead of the scene background (Võ & Schneider, 2010). Moreover, there is
evidence that search performance is higher when scene background versus object
content is available throughout the search; yet, both types of information were
shown to interact such that scene context provides coarse guidance to relevant
regions while object content yields guidance to specific areas (Pereira & Castelhano,
2014). Together, these findings may suggest that global scene properties have a
stronger contribution overall, and that they are utilized more readily than local
properties—the latter presumably first need to be parsed through a “selective
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pathway” that binds features into objects (Wolfe et al., 2011b). However, in
some other studies, the influence of objects was arguably stronger: Koehler and
Eckstein (2017a, 2017b) found scene background to affect search and perceptual
decisions less than object content which was divided into a co-occurring object (in
close proximity to the target) and multiple object configuration (encompassing all
other objects in the scene). While the influence of multiple object configuration
was already present in early eye-movements, co-occurring object information was
utilized later for a more fine-grained type of guidance. These findings are in line
with work showing that object content yields semantic guidance in the absence
of scene gist information—but only when the spatial configuration of objects is
intact—while scene gist does not enhance the utilization of semantic information
when object content is available (Wu et al., 2014a).

One explanation of the mixed results as to the relative importance of scene
background could be that scene background is not equally informative of the target’s
location across studies. Interestingly, Koehler and Eckstein (2017a, 2017b) found
that judgments of expected target locations per context ingredient predicted the
magnitude of eye-movement guidance for that particular ingredient—the inferior
contribution of scene background was related to the finding that scene background
was the least informative of the target’s location. In other studies, scene background
may have been more informative, possibly related to the way that scene background
and object content was defined. For instance, larger elements (e.g., a bed) are
sometimes considered as objects, given that they can plausibly be moved (Koehler
& Eckstein, 2017a, 2017b), whereas they are assumed to belong to the background
in other cases (Võ & Schneider, 2010; see also Pereira & Castelhano, 2014).
These larger objects may not only provide surfaces for local objects (Castelhano &
Krzyś, 2020; Pereira & Castelhano, 2019) but also constitute meaningful subunits
in scenes: It has recently been established that anchor objects distinctly contribute
to search guidance, yielding stronger facilitation than other semantically related
objects (Boettcher et al., 2018) or meaningless cuboids of similar sizes (Helbing
et al., 2020). Thus, the relative contributions of context ingredients may strongly
depend on the precision of the spatial predictions they yield (see also Eckstein,
2017), which may vary across studies and conceptualizations. In other words,
the goal of visual search is to locate something, and we may utilize most those
properties that precisely “tell us where to look”. Naturally, there are constraints
with respect to what information is available when/where in the visual system, and
at what cost. That is, a property may be very informative but not yet selected and
processed to the extent that it can guide search (Wolfe et al., 2011b).

While there is no doubt that spatial predictions are also utilized in object
recognition, they are naturally not a prerequisite for contextual modulation of object
processing. For instance, facilitation of object recognition is seen even when the
target’s location is entirely uninformative with respect to its identity (see Lauer
et al., 2020a). While the object recognition literature provides clear evidence of
contextual modulation in the absence of any recognizable objects in the scene (e.g.,
Brady et al., 2017), the relative contribution of such scene-based (vs. object-based)
ingredients has not been assessed in the absence of object content. Currently, there is
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some indication that both scene context (including objects) and object co-occurrence
can yield context effects of a comparable magnitude (Davenport, 2007; Lauer et al.,
2020b) and timeline (Lauer et al., 2020b).

Taken together, future work could aim at further teasing apart the relative
contributions of distinct global scene properties on the one hand and more local
information in the form of various types of co-occurring objects on the other while
also assessing how informative they are of the target. It will be especially crucial to
test how the various types of scene ingredients exert influence over time.

5.2 Context in Human and Computer Vision

Many of the recent advances in better capturing human efficiency in object search
and perception in the real world have been facilitated by large-scale databases and
computational models (e.g., Boettcher et al., 2018; Greene, 2013, 2016; Rosenholtz
et al., 2012)—inspired by a wide range of psychophysical, eye tracking, and neu-
rophysiological studies. Interestingly, in recent years, computer vision algorithms
have reached (or even surpassed) human performance levels in a number of tasks.
Studying how computational solutions accomplish these tasks may be quite useful
for understanding the mechanisms of human visual perception even better in the
future. That is, computational models inspired by the visual system can, if validated,
be used to test hypotheses about human vision in a highly controlled manner (for
a review, see Lindsay, 2020). Despite several challenges, researchers have recently
begun to compare and relate DNNs (specifically convolutional neuronal networks,
CNNs) to human perception across the hierarchy of the visual system. Activity
in the ventral stream has been shown to be generally well predicted by CNNs,
with outputs from higher artificial layers better predicting activity in higher visual
areas (see Lindsay, 2020). A network trained on scene recognition was able to
predict activity in occipital place area, providing insights into the processing of
navigational affordances (Bonner & Epstein, 2018; c.f. Lindsay, 2020). There is also
electrophysiological evidence of shared spatiotemporal scene category information
in humans and DNNs (Greene & Hansen, 2018). On the behavioral level, one cannot
only compare benchmark classification accuracy (for which DNNs are commonly
optimized) but also error patterns that humans and DNNs might share—or not
share (Wichmann et al., 2017). For example, why is it that humans unlike DNNs
sometimes fail to notice giant targets in scenes even when they are salient and
fixated (Eckstein et al., 2017)? These and other assessments may provide further
insights into the mechanisms of search and object perception in scene context. To
test or to generate new hypotheses, biologically inspired artificial networks can be
altered in many ways, for instance by manipulating their architectures, training sets,
or training procedures (see Lindsay, 2020). Of course, careful comparisons and
interpretations are important; humans and neuronal networks may achieve a very
similar task outcome but accomplish it in an entirely different way computationally.



The Ingredients of Scenes that Affect Object Search and Perception 23

On the other hand, for large parts of the computer vision community, neuronal
networks need not be biologically plausible; they are commonly intended to achieve
the highest possible performance in a given tasks such as object recognition. An
understanding of human efficiency in object perception, however, may help in
further optimizing computer vision algorithms. A key difference between state-of-
the-art DNNs and the human visual machinery is that DNNs still require massive
quantities of labeled training data, while humans can learn new object concepts from
a very small number of examples (Morgenstern et al., 2019; Spiegel & Halberda,
2011). Moreover, while DNNs achieve benchmark performance under certain
controlled conditions, they sometimes fail under slightly changing conditions
(e.g., image degradation or contrast reduction; Geirhos et al., 2018; Wichmann
et al., 2017) and may thus lack the robustness and flexibility of human vision.
Intriguingly, misclassification can even occur when the target is altered in a way that
is unnoticeable for the human eye (see “adversarial examples”, e.g., Goodfellow
et al., 2014). In many algorithms for object recognition, context information
is utilized only indirectly (Zhang et al., 2020): For instance, DNNs trained on
object recognition in natural scenes typically represent some contextual features
implicitly, which becomes apparent when they are fooled by a target-incongruent
scene context (see Fig. 5). Recently, Zhang et al. (2020) introduced a biologically-
inspired model that builds on feature extraction of a state-of-the-art DNN for object
recognition (VGG16), yet incorporates scene context more explicitly; target and
context features are processed in parallel using a dual stream architecture, with an
attention mechanism selecting informative parts of the context. Performance of the

Fig. 5 DNNs for object recognition do not yield an accurate label when the scene context is
inconsistent with the target, as seen in the top-five labels and corresponding confidence levels
for three state-of-the art models. This indicates that DNNs represent some contextual features even
though they are usually not specifically designed to do so. Figure reproduced from Zhang et al.
(2020) with permission
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Context aware Two-stream Attention network (CATNet) was highly correlated with
human performance across various object recognition experiments (manipulating
the quantity, quality and dynamics of context) while also outperforming other
models overall. However, it should be noted that all tested models, including
CATNet, performed considerably worse than humans when the targets were small.
That is, variable object size in natural images still remains a challenge in computer
vision (Zhang et al., 2020). Another recent dual pathway model, GistNet, was
designed such that it would utilize coarse global features of the context, inspired by
human scene gist perception (Wu et al., 2018). GistNet was shown to outperform
VGG16, even when the scene context was significantly blurred which strongly
reduced recognizable objects. The authors also visualized what features the two
streams actually utilized and concluded that the foveal pathway employs “local
edges and lines”, while the global pathway finds “more holistic scene information
corresponding to gist-like features” (p. 5).

Taken together, similar to exploring the influence of various context ingredients
in human perception, these same ingredients could also be put to a test in computer
vision applications furthering the reciprocal benefit when combining methods and
theory of both research areas.

6 Conclusion

The way we search for, identify, and interact with objects in the real world is
substantially shaped by the scene context in which they occur. In this chapter, we
outline recent endeavors to determine what context information (or “ingredients”)
are actually utilized by the visual system for efficient object localization and
identification. We argue that, in both domains, a rapidly acquired coarse global
representation of the scene, which can be inferred from spatial layout information,
can already lead to contextual modulation. Moreover, at least indoor scenes tend to
be organized hierarchically with various levels of context exerting strong influence
on both object search and perception. While we have begun to understand which
ingredients of a scene matter, there is still much work to be done to more precisely
assess the relative contributions of various context ingredients, especially as they
unfold over space and time.
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