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A B S T R A C T   

We live in a rich, three dimensional world with complex arrangements of meaningful objects. For decades, 
however, theories of visual attention and perception have been based on findings generated from lines and color 
patches. While these theories have been indispensable for our field, the time has come to move on from this 
rather impoverished view of the world and (at least try to) get closer to the real thing. After all, our visual 
environment consists of objects that we not only look at, but constantly interact with. Having incorporated the 
meaning and structure of scenes, i.e. its “grammar”, then allows us to easily understand objects and scenes we 
have never encountered before. Studying this grammar provides us with the fascinating opportunity to gain new 
insights into the complex workings of attention, perception, and cognition. In this review, I will discuss how the 
meaning and the complex, yet predictive structure of real-world scenes influence attention allocation, search, 
and object identification.   

1. Introduction 

The bulk of studies in vision science has used highly abstract, arti-
ficial tasks and simplified stimuli. While this approach has proven 
essential in forming our understanding of the basic principles of vision, 
the field has reached a point at which we need to highlight the need for a 
new type of ecological perspective (Gibson, 1979), one that builds upon 
well-controlled laboratory research while additionally seeking to un-
derstand how we make sense of and interact with our actual environ-
ment (Hayhoe, 2017; Hayhoe & Ballard, 2005; Hayhoe & Rothkopf, 
2010). Luckily, our visual world might be more complex in nature than 
most laboratory stimuli, but it rarely presents itself to us as chaotic. 
Instead — similar to words as part of sentences — objects as part of a 
scene tend to be structured in a rule-governed way. This “grammar” 
seems to be the source of efficient scene understanding, object recog-
nition, and goal-directed behavior (Biederman, Mezzanotte, & Rabino-
witz, 1982; Draschkow & Võ, 2017; Võ & Wolfe, 2013a, 2013b; Võ, 
Boettcher, & Draschkow, 2019). 

In the 1980s, Biederman et al. (1982) demonstrated that objects 
violating our generic knowledge of the world are more difficult to 
identify when presented briefly in an inconsistent scene context. 
Although this initial perceptual account of incongruent objects was later 
challenged (e.g., by controlling for response biases, Henderson & 

Henderson, 1998), Biederman’s initial taxonomy that described various 
relations between objects and their surroundings still inspires work 
today. Biederman suggested that “something roughly analogous to what 
may be needed to account for the comprehension of sentences is 
required to account for the speed and accuracy of the comprehension of 
scenes never experienced before.” (Biederman, 1976). Accordingly, the 
terms “semantics” and “syntax” have been used to describe object-scene 
relationships that determine what objects should be where within a 
scene, respectively (Biederman et al., 1982; Võ & Henderson, 2009; 
2011; Võ & Wolfe, 2013a). We have modified this initial conceptuali-
zation such that objects that do not fit the overall meaning of a scene (e. 
g. a piece of cheese in the bathroom) are referred to as semantic viola-
tions, while we consider objects that are semantically consistent, but 
structurally unexpected (e.g. toilet paper in the shower) as syntactic 
violations. 

2. Objects in context 

When objects repeatedly appear together within certain contexts (e. 
g., a pot on a stove in a kitchen), these experienced regularities will 
create predictions which are stored as part of our scene grammar. This 
allows us to not only rapidly process and interpret the current visual 
input, but also predicts other elements of a visual scene that might not 
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yet be fully visible (see Bar, 2004 for a review). Perception is therefore 
not merely a reactive but a proactive process and object contexts play a 
crucial role in sharpening our predictions. 

Already in the early 1980s, Biederman et al. (1982) were able to 
show that objects semantically consistent with the scene category they 
were presented within are identified faster and more precisely than 
objects that do not fit the scene category. Even when they are only 
briefly presented, objects placed on task-irrelevant background images 
are named less accurately if they are inconsistent with these background 
scenes and vice versa (see also Davenport & Potter, 2004). 

Beyond explicit naming of objects, event-related potentials (ERPs) — 
that are present in the electroencephalogram (EEG) signals — are able to 
indicate an observer’s covert response to such stimulus manipulations. 
Particularly in the domain of language, EEG recordings have been used 
to distinguish semantic and syntactic processing, since these two types 
of processing have shown to elicit two distinct types of ERP responses: 
Roughly speaking, an N400 signals semantic violations (for a review see 
Kutas & Federmeier, 2011), while a P600 marks inconsistent syntactic 
structure. 

We have previously extended this finding from language processing 
to scene perception by measuring ERPs while observers saw semanti-
cally or syntactically invalid objects within scenes in order to look for 
neural markers that distinguish these two types of processing. In fact, we 
found a clear dissociation between ERP signatures of semantic and 
syntactic scene processing (see Fig. 1; Võ & Wolfe, 2013a): As predicted 
by the sentence processing literature as well as pioneering work in the 
domain of visual perception by Ganis and Kutas (2003), semantic object- 
scene inconsistencies produced negative deflections in the N300/N400 
time window (blue line in Fig. 1) similar to the N400 responses seen in 
language processing (see also Demiral, Malcolm, & Henderson, 2012; 
Mudrik, Lamy, & Deouell, 2010; Mudrik, Shalgi, Lamy, & Deouell, 
2014), while syntactic inconsistencies elicited a late positivity resem-
bling the P600 found for syntax manipulations (see Fig. 1, red solid lines; 
see also Cohn, Jackendoff, Holcomb, & Kuperberg, 2014 for semantic 
and syntactic processing in visual narratives). Recently, EEG activity 
recorded during observation of actions has shown that similarly action 
content versus action structure also elicit differential brain responses 

reminiscent of dissociations found in the domains of language or music 
(e.g., Maffongelli et al., 2015; Patel, 2003). Critically, even though 
context-sensitive processes such as the N400 interact with perceptual 
stages of object recognition (Draschkow, Heikel, Võ, Fiebach, & Sas-
senhagen, 2018), this late neural response is largely independent of low 
level stimulus properties, and is reflected in different event-related po-
tentials (Truman & Mudrik, 2018). 

Interestingly, extreme syntax violations — i.e. physical violations 
such as a floating toaster (see dotted red line in Fig. 1) — failed to 
produce a P600 effect. A floating toaster might be so at odds with our 
expectations regarding scenes that no reanalysis is triggered. This is in 
line with findings using linguistic stimuli where extremely un- 
grammatical sentences also fail to elicit a P600 response due to a lack 
of reanalyzing the sentence (see Hopf, Bader, Meng, & Bayer, 2003). 

One should not take such similarities between linguistic, action, 
music, and/or scene processing as evidence for identical grammatical 
processing across domains. However, it may be that there are shared 
cognitive mechanisms that govern these percepts. 

3. Local and global context effects on object processing 

While it seems clear that scene contexts influence the processing of 
objects, it has remained unclear which “ingredients” of a scene are 
sufficient to modulate such processing driving the reported consistency 
effect? One can imagine scene context influencing object processing in at 
least two different ways: global effects stemming from broad properties 
of a scene or more local effects due to the immediate surroundings of a 
particular object. We have known since Molly Potter’s seminal work in 
the 1970s, that the semantic content or gist of a scene can be accessed 
from images presented at rates up to 10 per second (Potter, 1975). 
Diagnostic colors have also been shown to mediate scene recognition 
(Oliva & Schyns, 2000). Moreover, statistical and structural cues 
extracted from very brief (e.g. 19 ms, masked) exposures allow for 
above-chance semantic categorization of scenes (natural/urban: Greene 
& Oliva, 2009). This can be done without the need to segment and 
identify the objects embedded in a scene (for a review see Oliva & 
Torralba, 2007). As a consequence, non-selective information extracted 

Fig. 1. Grand-average event-related potential (ERP) waveforms recorded from the midcentral region and computed for the consistent control, inconsistent- 
semantics, inconsistent-syntax/extreme-violation, and inconsistent-syntax/mild-violation conditions. The time windows for the N300, N400, and P600 ERP com-
ponents are highlighted (taken from Võ & Wolfe, 2013a). 
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from the initial glimpse of a scene can serve as a quick and powerful 
source of information that guides search within that scene (Castelhano & 
Henderson, 2007; Larson & Loschky, 2009; Larson, Freeman, Ringer, & 
Loschky, 2014; Võ & Henderson, 2010; for a review see Wolfe, Võ, 
Evans, & Greene, 2011). 

We have recently tested the influence of global image statistics by 
investigating how so-called scene textures as introduced by Portilla and 
Simoncelli (n.d.) , modulate object processing. These textures have the 
feature that they retain a collection of global statistical measures – based 
on basic visual features – similar to a source image, but discard spatial 
layout information (see Fig. 2 left vs. middle column; Lauer, Cornelissen, 
Draschkow, Willenbockel, & Võ, 2018). Replicating previous studies, we 
found that objects presented on semantically consistent scenes were 
identified significantly better than if they were presented on inconsistent 
scenes. Objects presented on scene textures had a similar, but much 
weaker effect. When recording ERPs, a pronounced mid-central nega-
tivity in the N300/N400 time windows was triggered by inconsistent 
relative to consistent objects on scenes. When we presented these objects 
on scene textures, inconsistent objects resulted in similar brain re-
sponses characterized by slightly weaker N300/N400 components. 
These results imply that the low-level features of scenes at least 
contribute to the semantic processing of objects in complex real-world 
environments. 

In addition to these global scene properties allowing for rapid 
extraction of scene gist and activation of scene knowledge, more local 
information surrounding an object might play a role in its processing as 
well. For instance, objects themselves have been shown to activate scene 
context representations (for a review, see Trapp & Bar, 2015), which 
then again can prime other objects within a scene. However, a more 
direct route to activate object representations probably includes co- 
occurring objects, i.e. seeing a toothbrush will allow you to guess that 
a tube of toothpaste rather than a tube of mustard is likely nearby (see 
also Mack & Eckstein, 2011). More specifically, through a lifetime of 
seeing objects in specific configurations we have acquired knowledge 
regarding the spatial positioning of not only the target, but also dis-
tractor objects which could speed object search and facilitate percep-
tion. For instance, Gronau and Shachar (2015) presented objects either 
contextually related (e.g. lamp and desk) or unrelated (keys and apple) 
and found that such contextual manipulations on the object level 

increased visual detail encoding into LTM at very short presentation 
durations. However, these were isolated objects on white background. 
For other objects within a cluttered scene to influence the processing of a 
critical object, these other objects would need to be identified first, 
which – in most cases – would be too time consuming for the local 
context to exhibit the rapid consistency effects demonstrated in previous 
studies. That said, the processing of a bathroom sink might help recog-
nizing the tube of toothpaste even within a glimpse, but I will discuss 
these “special” types of objects in scenes in Section 8. 

In sum, both local and global information will most likely contribute 
to the efficiency of not only object recognition, but also object search in 
naturalistic scenes. Thus identifying the key ingredients of scene con-
texts that affect object processing and studying the complex interplay of 
local and global information processing in scenes will yield interesting 
new insights into the efficiency of human perception. 

4. Attention allocation in real-world scenes 

While the rapid interplay of local and global information is fasci-
nating, we usually do not see the world in brief glimpses. Instead, we 
gather information by moving our eyes to different parts of a scene, 
accumulating information as we go. One of the key questions in the field 
of scene perception has been what determines where and when we 
attend during scene viewing. Computer vision approaches have been 
influential in their attempts to answer these questions. Computational 
models of saliency, for instance, initially did a decent job in predicting 
where people will look using exclusively bottom-up feature contrasts 
(Itti & Koch, 2000; Koch & Ullman, 1985), especially when objects as 
mid-level features are taken into account (Malcolm & Shomstein, 2015). 
Incorporating neurophysiological constraints on saccade programming, 
MASC – a model of attention inspired by the superior colliculus – can 
predict where people look during free viewing of scenes or during search 
(Adeli, Vitu, & Zelinsky, 2016). While most models predicting gaze have 
focused on predicting where people look, both the CRISP (Nuthmann, 
Smith, Engbert, & Henderson, 2010) and more recently the LATEST 
model have been developed with the aim to predict when the eyes move 
(Tatler, Brockmole, & Carpenter, 2017). 

What all these models have in common is that the information used 
to model gaze stems from mainly low-level visual features, but there are 

Fig. 2. Example of a stimulus set with objects superimposed on either scenes (left column), scene textures that preserve similar summary statistics as compared to the 
full forest scene but discards global shape information (middle), or color controls (right) (taken from Lauer et al., 2018). 
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limits of saliency as an explanatory tool (e.g. Henderson, Brockmole, 
Castelhano, & Mack, 2007; Henderson, Malcolm, & Schandl, 2009; 
Tatler, Hayhoe, Land, & Ballard, 2011). When searching for your phone, 
the visual information of your phone or your surroundings will initially 
not be an important guidance factor. Instead, you tend to start by 
searching your episodic memory, revisiting places where you usually 
leave your phone or revoking memory traces on where you last saw it, 
leaving little to no room for the influence of an object’s bottom-up 
saliency. 

It has been shown that attention and eye movements are less bound 
to target low-level features and more to meaningful units, like objects (e. 
g. Nuthmann & Henderson, 2010; Stoll, Thrun, Nuthmann, & Einhäuser, 
2015). Latest work using deep neural networks to identify objects, has 
impressively shown that simply by including features pre-trained on 
object recognition into a model, its performance on predicting ob-
servers’ eye movements during scene viewing can be boosted (for an 
overview of the contribution of low-and high-level contribution to fix-
ation predictions see Kümmerer & Gatys, 2017). 

Knowledge regarding co-occurring objects as well as probable scene 
regions where objects tend to be found provides strong contextual cues 
during real-world search (e.g., Mack & Eckstein, 2011; Neider & 
Zelinsky, 2005; Torralba, Oliva, Castelhano, & Henderson, 2006), even 
when objects are semantically inconsistent with their surroundings 
implying an independent influence of both local and global information 
on attention allocation in scenes (Castelhano & Heaven, 2011; Koehler 
& Eckstein, 2017). Castelhano and Heaven (2010) were able to disen-
tangle the differential contributions of target features, gist and scene 
details for attentional guidance showing that both scene context and 
target features speeded search and that previewing visual details of a 
scene improved search guidance beyond its gist alone. 

The superiority of top-down knowledge over bottom-up saliency in 
guiding visual attention has been demonstrated often and in many 
compelling ways (e.g. Eckstein, Koehler, Welbourne, & Akbas, 2017; 
Henderson et al., 2009; Vo & Henderson, 2009; Võ & Henderson, 2010). 
But the best example is my 3-year-old daughter who knows exactly 
where to look for the cookies specifically hidden from view in the 
kitchen, no target features needed. 

Henderson and colleagues (Henderson, Hayes, Peacock, & Rehrig, in 
press) have started directly comparing the influences of meaning and 
image salience on attentional guidance in real-world scenes (see also 
Hwang, Wang, & Pomplun, 2011; Wu, Wick, & Pomplun, 2014 for 
guidance by semantics). Here, the spatial distribution of semantic fea-
tures in a scene is represented as a meaning map (Henderson & Hayes, 
2017), which are generated from crowd-sourced responses of partici-
pants who rate the meaningfulness of a large number of scene patches 
drawn from various scenes. They showed that when the correlation 
between meaning and saliency was statistically controlled, only mean-
ing uniquely accounted for variance in attention. 

Eye movements have frequently been used as an implicit indicator of 
attention allocation in space signaling semantic processing, for instance 
when something is amiss. Since the seminal work by Loftus and Mack-
worth (1977), longer looking times on semantically inconsistent 
compared to consistent objects have been replicated many times 
reflecting increased attentional demands (e.g., Bonitz & Gordon, 2008; 
Cornelissen & Võ, 2016; de, Graef, Christiaens, & Gd’Ydewalle., 1989; 
Henderson, Weeks, & Hollingworth, 1999; Loftus & Mackworth, 1977; 
Öhlschläger & Võ, 2016; Underwood, Templeman, Lamming, & Foul-
sham, 2008; Vo & Henderson, 2009). Also syntactic inconsistencies lead 
to longer dwell durations (e.g. Henderson et al., 1999; Öhlschläger & Võ, 
2016; Vo & Henderson, 2009; see also the SCEGRAM database for a 
highly controlled set of images containing objects that undergo various 
types of semantic and syntactic violations provided by Öhlschläger & 
Võ, 2016). The eyes even get “stuck on semantics” when observers are 
told to search for Ts amongst Ls overlaid on task-irrelevant background 
scenes that contain semantically inconsistent objects (Cornelissen & Võ, 
2016). This implies that the relationship between an object and its scene 

is processed automatically. Thus, even task-irrelevant semantic mis-
matches within a background scene can have an impact on where we 
look. 

While there is agreement on the fact that people look longer at 
semantically inconsistent objects, it has been a matter of debate as to 
whether such inconsistencies can also be processed in and thus attract 
attention to the visual periphery (Becker, Pashler, & Lubin, 2007; Coco, 
Nuthmann, & Dimigen, 2020; de et al., 1989; LaPointe & Milliken, 2016; 
Underwood, Humphreys, & Cross, 2009; Vo & Henderson, 2009; Võ & 
Henderson, 2011). These conflicting results seem to be due to a mixture 
of stimulus properties (e.g., the saliency and size of the critical objects), 
task (e.g., visual search vs. change detection), and overall differences in 
global properties of the scenes used (e.g. cluttered photographs vs. 
sparser 3D rendered images). Larger scale meta analyses of the stimulus 
materials used combined with regression-based approaches incorpo-
rating stimulus differences across studies could potentially elucidate on 
this matter. Until then it should be safe to state that both scene semantics 
and syntax heavily influence attention and ongoing eye movement 
behaviour during real-world scene viewing. 

5. Memory for objects in scenes 

We have seen that our memory for objects in scenes, i.e. past expe-
riences that we use to generate predictions, seems to be key when 
interacting with real-world environments. Particularly when searching 
for an object, we tend to guide our search by a mixture of memories: 
Generic knowledge about what objects tend to be where – scene 
grammar – as well as more specific memories about that particular scene 
stored in episodic memory. When studying the influence of memory on 
search, the stimulus material commonly used contains arbitrary items 
such as oriented bars or rotated Ts amongst upright Ls. Interestingly, the 
classic contextual cueing studies impressively demonstrated that even 
such seemingly meaningless “scenes”, could be learned to an extent that 
speeded search without participants being explicitly aware about the 
fact that they had repeatedly seen the same target-distractor arrange-
ments (Chun & Jiang, 1998). Observed search benefits result from 
associating the location of a particular target exemplar with a particular 
search array allowing for more efficient allocation of attention to a 
subset of the visual display that most likely contains the target item. 
Thus, episodic memory for previous exposures to a scene — even when 
implicit — can improve search. 

Searching through real-world scenes is a very different thing, 
though. Here, target-context associations are much more abstract and 
are governed by semantic expectations (Brockmole & Le-Hoa Vo, 2010). 
Moreover, there has been a bulk of studies now demonstrating that once 
we move to more realistic stimuli, we seem to have massive memory for 
images of both objects and scenes that goes way beyond our capacity of 
memorizing meaningless items (e.g., Konkle, Brady, Alvarez, & Oliva, 
2010; but see Cunningham, Yassa, & Egeth, 2015; Draschkow, Reinecke, 
Cunningham, & Võ, 2019 for the importance of what type of encoding 
and which memory test is used). Visual details of previously fixated (and 
therefore likely attended) objects in naturalistic scenes can be stored in 
LTM for hours or even up to days (for a review see Hollingworth, 2006). 
Even incidental fixations on objects during search improve subsequent 
recognition memory (e.g., Castelhano & Henderson, 2005; Võ, 
Schneider, & Matthias, 2008). 

These studies support the conclusion that looking at an object pro-
vides the observer with considerable information regarding its appear-
ance and position within the scene. Thus, it seems reasonable to believe 
that repeatedly searching through the same visual scene should increase 
guidance by episodic memory to speed search. However, in a study by 
Wolfe and colleagues (Wolfe, Alvarez, Rosenholtz, Kuzmova, & Sher-
man, 2011a), participants repeatedly searched the same scenes for 
various different objects with surprisingly little reduction in search ef-
ficiency across searches. Võ and Wolfe (2012) replicated these findings 
tracking eye movements and argued that in real-world scenes the ability 
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to use guidance by scene semantics and syntax diminishes the role of 
episodic memory because when contextual guidance is strong it is faster 
to just search again than reactivating possibly faulty episodic memory 
representations (but see Hollingworth, 2012). If this were true, one 
would predict that episodic memory should become more useful if other 
sources of scene guidance are lacking. Võ and Wolfe (2013b) put this to a 
test by presenting participants with search displays containing incon-
sistently placed objects (i.e. syntactic guidance was misleading) and 
found that now episodic memory did indeed boost search. 

On the other hand, once an object has been found, searching for it a 
second time is significantly speeded (Hollingworth, 2012; Võ & Wolfe, 
2012, 2013b; Wolfe et al., 2011a). This implies that looking at an object 
versus looking for an object has differential effects on the object repre-
sentations encoded and stored into memory (Võ & Wolfe, 2012). How-
ever, actual memory performance for searched targets had not been 
explicitly tested in any of these studies. Therefore we directly compared 
memory performance of target objects incidentally encoded during 
search in scenes with that created by having another group of partici-
pants intentionally memorize the same objects (Draschkow, Wolfe, & 
Vo, 2014). We found that memory recall was actually substantially 
better for searched objects that were incidentally encoded than for ob-
jects that had been intentionally memorized. This “search superiority 
effect” remained stable even when gaze durations on the critical objects 
were kept equal across conditions. Note that the mere act of finding an 
object cannot explain this memory benefit for searched items, since 
when the same experiment was performed with random object displays 
instead of depictions of real-world scenes, search superiority dis-
appeared (Josephs, Draschkow, Wolfe, & Võ, 2016). Thus, in addition to 
aiding object search, scene grammar may also help create a beneficial 
scaffolding that promotes memory for objects that one has previously 
looked for. 

6. Cognitive development of scene knowledge 

It is clear that we have a vast body of scene knowledge that in-
fluences our perception. However, we do not enter this world knowing 
where objects should be, but over time have learned the rules of our 
world by constantly interacting with it. Some of this knowledge seems to 
be there from early age. There is a large corpus of work showing that 
knowledge regarding basic physical laws and number concepts, for 
instance, is already well developed in infants (for reviews see Hespos & 
vanMarle, 2011; Spelke, Breinlinger, Macomber, & Jacobson, 1992). 
Baillargeon (1987) demonstrated that infants as young at 3.5 months of 
age look significantly longer at events where a rotating screen appears to 
pass through space occupied by a box as when it behaves physically 
expected, indicating that infants at that age already possess an under-
standing of physical laws. Spelke et al. (1992) further showed that in-
fants as young as 2 months looked longer at a ball that did not stop when 
it came in contact with a solid wall. Thus, “core knowledge” systems 
seem to be in place at a very early stage. Moreover, eye tracking studies 
have shown that infants as young as 4 months can predict the reap-
pearance of occluded objects (Johnson, Amso, & Slemmer, 2003). 

In contrast, understanding the relationship between an object and its 
meaningful context seems to occur later in life. Ratner and Myers 
(1981), for instance, asked children to name objects that would fit 
certain rooms in a dollhouse. They found that major conceptual changes 
took place between ages two and three in that 2-year-olds produced 
fewer core items (objects that we would call “anchor objects”) than the 
3- and 4-year-olds. Moreover, the consistency effect – i.e. longer gaze 
durations on semantically inconsistent objects – known from studying 
adults was also demonstrated in two-year olds, but only when attention 
was already directed to the critical objects by their high visual saliency 
(Helo, van Ommen, Pannasch, Danteny-Dordoigne, & Rämä, 2017). 

In a recent study (Öhlschläger & Võ, 2020), we investigated the 
behavioral responses of 72 two- to four-year-olds in two tasks that either 
measured scene knowledge directly by asking them to furnish a 

dollhouse or indirectly by observing their eye movements when viewing 
scene photographs that included semantically inconsistent objects. The 
consistency effect as we know it from studying adults was evident only 
in children older than three years. Interestingly, the differences in first- 
pass dwell durations between consistent and inconsistent objects were 
due to shorter processing times, i.e. faster disengagement, for consistent 
objects reflecting stronger predictions for objects in their familiar 
context/location as children grow older. This reduction of first-pass 
dwell times to consistent objects correlated with the dollhouse perfor-
mance measure of scene knowledge. These results imply that scene- 
related predictions can effectively influence both implicit and explicit 
behavior at the latest by the age of four years allowing optimized 
attention allocation in scenes. 

While eye movements provide an easily accessible, implicit measure 
of contextual effects on object processing, measuring ERPs such as the 
N400 component in response to semantic context violations has been 
used as a possibly more sensitive indicator for modulations of semantic 
processing in adults (e.g. Lauer et al., 2018; Lauer, Willenbockel, Maf-
fongelli, & Võ, 2020). In a recent study, we found that already 2-year-old 
toddlers showed modulations of the N400 component in response to 
objects presented semantically inconsistent contexts (Maffongelli, 
Öhlschläger, & Võ, 2020). This implies that by the age of two, toddlers 
might have already developed scene semantic knowledge to a degree 
that allows them to detect purely visual, semantic object-scene in-
consistencies. While that might not yet become evident in overt eye 
movements, the brain seems to already pick up on these semantic 
irregularities. 

Early deficits in semantic processing — as seen in the absence of 
N400 components in response to semantic picture-word violations — 
have been shown to correlate, for instance, with enhanced risk for the 
development of specific language impairment (SLI) (Friedrich & Frie-
derici, 2006). Both the development of language and the development of 
scene knowledge are essential for everyday life and both require the 
integration of new experiences into existing knowledge structures. It is 
therefore possible that the acquisition of language and the refinement of 
scene knowledge go hand in hand, drawing on similar cognitive re-
sources. To this date, only few studies have investigated this relationship 
during development (e.g., Helo et al., 2017; Öhlschläger & Võ, 2020; 
Saarnio, 1990). Clearly further work is needed to elucidate whether the 
development of language and perception really draw on shared knowl-
edge structures. 

7. Real-World environments 

In order to understand how we represent our world it is important to 
investigate cognition under more realistic settings in which participants 
are free to move around the environment and perform more natural 
tasks (Gibson, 1979; Hayhoe, Shrivastava, Mruczek, & Pelz, 2003; 
Kingstone, Smilek, & Eastwood, 2008; Malcolm, Groen, & Baker, 2016; 
Tatler et al., 2011, but see Holleman, Hooge, Kemner, & Hessels, 2020 
for a critical review of the term “ecological validity”). 

In general, studying perception in real-world environments shifts the 
focus away from the properties of the stimulus toward a consideration of 
the behavioral goals of the observer (like navigation, obstacle avoid-
ance, or grasping) as well as the behavior’s metabolic costs. For instance, 
Gilchrist, North, and Hood (2001) compared search for arbitrary objects 
in 2D displays (symbols) with search for arbitrary objects in 3D envi-
ronments (arrays of film canisters) and found an increased use of 
memory when body movements were involved. And there is further 
evidence that acting on objects influences our memory for them (e.g. 
Draschkow & Võ, 2016; Harman, Humphrey, & Goodale, 1999; Tre-
wartha, Case, & Flanagan, 2015). In Draschkow and Võ (2016), for 
instance, we showed that interacting with objects during a search task 
within 3D environments modulated memory for the object’s identity 
and position as a function of whether it was task-relevant versus 
irrelevant. 
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However, active behavior does not always seem to enhance memory 
representations. After active exploration of a virtual environment, recall 
and recognition memory were neither improved for object identity nor 
location memory (Brooks, Attree, Rose, Clifford, & Leadbetter, 1999). 

More recently, we used virtual reality (VR) to let participants 
construct their own environments from scratch, either consistent to their 
scene grammar or in a manner they considered inconsistent (Draschkow 
& Võ, 2017). We tested observers’ memory in two ways: explicitly, by 
having them rebuild some rooms with all objects and their locations or 
implicitly, by having them repeatedly search through the formerly built 
rooms. With this setup, we were able to demonstrate that contextual 
violations, even those that were created by the observers themselves, 
can impede both explicit memory and search performance. As an addi-
tional indicator of memory involvement, we also looked at the devel-
opment of search efficiency over the course of repeated searches within 
one scene and found that compared to 2D searches (Võ & Wolfe, 2012; 
Wolfe, 1998), searches in this 3D environment do become faster over 
time (see also Draschkow & Võ, 2016; Helbing, Draschkow & Võ, 2020; 
see also Li, Aivar, Kit, Tong, & Hayhoe, 2016). Moreover, we replicated 
the “search superiority effect” in that we found superior memory for 
searches versus memorized objects also in fully immersive, 3D envi-
ronments (Helbing et al., 2020). 

While we cannot and should not do without well-controlled and 
simplified laboratory studies, I strongly believe that we additionally 
need to design experiments in as realistic scenarios as possible. This 
would allow us to critically question which findings really translate to 
the real world and which might be artefacts of paradigms too far from 
what we do in real life. But more importantly, in order to study the 
meaning and structure of scenes in their full complexity, we need to 
investigate attention, perception, and cognition in scenarios that at least 
mimic our daily experiences, while creating new methods and tech-
niques that allow us to better analyse, visualize and make sense of this 
increasingly rich data. 

8. Spatial hierarchies of objects in scenes 

What makes a scene and how are scenes organized? Is a depiction of 
an office room as much of a scene as a close-up of a desk? And how are 
predictions that we have about what objects should be where organized? 
There are different ways to approach these questions. Most of the studies 
– including our own - that investigated the types of predictions we have 
regarding a scene have presented observers with images that depict 

violations of their expectations, e.g. semantic vs. syntactic violations. In 
Draschkow and Võ (2017), we opted for a new paradigm and utilized 
virtual reality technology to overcome previous constraints by investi-
gating how people would build their own environments. That is, by 
providing them with empty rooms that they were instructed to equip 
according to how they felt it was “grammatically correct”, we were able 
to “watch” scenes being built from scratch according to the scene 
grammar of our participants, something that would be utterly difficult to 
do in the real world (unless you work at a moving company and ask your 
movers to furnish initially empty rooms). Looking at how and in which 
order the participants handled the different objects, we could literally 
see how large objects that are generally hard to move were placed first, 
followed by arranging smaller objects around them. As can be seen in 
Fig. 3, global objects were moved early in each trial and seemed to 
define the space, which can then be filled according to a more fine- 
grained grammar with other local objects in relation to the global 
ones. We have termed these global objects “anchors” (Boettcher, 
Draschkow, Dienhart, & Võ, 2018), because they seem to play an 
important role in “anchoring” the position of other objects within a 
scene (e.g. “I first need to place the toilet in order to position the toilet 
paper next to it.”). 

These data demonstrate experimentally that not all objects are 
created equal. For instance, it has previously been shown that some 
objects tend to be more important for scene categorization, i.e. are more 
“diagnostic”, than others (Biederman, 1981; Biederman et al., 1982; 
Friedman, 1979; Greene, 2013). More importantly, especially in indoor 
scenes, objects tend to cluster around anchors forming meaningful sub- 
groups or – as we have started to call them - “phrases”, e.g. individual 
sink vs. shower vs. toilet phrases that together make up the larger 
bathroom (see Fig. 4). Knowledge about this partitioning of a scene 
obviously will be helpful in making your search more efficient: When 
looking for the shampoo, you can quickly disregard the sink and the 
toilet phrases, focusing your search on only the behaviorally relevant 
sub unit, here the shower phrase. Similarly, this knowledge of a scene’s 
hierarchical composition will speed object recognition: When you see 
something standing on top of the stove in the corner of your eye, the 
predictions regarding what types of objects usually rest on top of this 
anchor will quickly narrow down the list of possible objects and let you 
identify the blurry object as a pot. 

What now do we mean by “anchor objects” and how do they differ 
from merely being large, diagnostic objects? In addition to often being 
prominent objects that are diagnostic for a scene, e.g. the shower in the 

Fig. 3. The left figure shows a Birdseye depiction of a bathroom that was constructed in a manner participants considered consistent. Local objects were placed 
relative to anchors. The right graph depicts computed density estimates (y-axis) for first object grabs during a trial (x-axis) as a function of Object type (global vs. 
local) showing that global objects (anchors) were handled early within a trial. 
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bathroom or the stove in the kitchen, the most important feature of 
anchors is that other objects within the same phrase have defined spatial 
relations relative to their anchors. That is, diagnostic objects mainly are 
able to tell us what scene we are in, while anchors over and above that 
provide us with predictions regarding where objects are. e.g. the shampoo 
in the shower, the pot on the stove, the lamp beside the bed (see 
Draschkow & Võ, 2017). A toilet brush, on the other hand, might be 
diagnostic of the scene category bathroom, but will not exactly tell us 
where the toilet paper is. 

Moving away from a binary – often intuitively based – definition of 
anchors, we have tried to operationalize their otherwise vague 
conceptualization by using four concrete determinants (Boettcher et al., 
2018; Võ, Boettcher, & Draschkow, 2019): 1) the frequency in which 
objects appear together, 2) the distance between objects, 3) the variance 
of the spatial location, and 4) the clustering of objects within scenes. Out 
of these we formulated an algorithm and applied that to large labeled 
databases, for instance LabelMe (Russell, 2008) allowed us to determine 
typical anchor objects as a function of different scene categories. To test 
whether the presence of such anchor objects has any behavioral rele-
vance, we manipulated anchor objects using 3D rendered scenes 
(Boettcher et al., 2018). Participants in this study were then asked to 
search for various local objects with anchor objects either present or 
absent (replaced by a similarly sized and semantically consistent object). 
Tracking their eye movements we found prolonged search times and 
increased fixation distributions when anchors were absent, providing 
first evidence that the presence of anchors plays a crucial role in guiding 
efficient search in naturalistic scenes, and might prove to be also 
important for scene perception and object identification. 

A better understanding of the role of anchor objects for the efficiency 

of object search could also improve the ability of models to predict eye 
movements during real-world search or improve identification of small 
or occluded objects. When looking for a mirror in an empty bathroom 
(see Fig. 5A), existing models like the contextual guidance model 
(Torralba et al., 2006) would have predicted a rather broad, horizontally 
unconstrained search area (see Fig. 5B). However, when we had par-
ticipants in the lab search for an “invisible mirror”, they mainly looked 
above the sink and nowhere else within that horizontal plane as can be 
seen in very confined fixation distributions (see Fig. 5C). A model that 
would include spatial predictions of objects based on anchors could 
greatly reduce predicted search areas by initially identifying and 
locating a scene’s anchors, and restricting target search areas to loca-
tions predicted in relation to the according anchor, e.g. “above the sink” 
(see Fig. 5D). Such a model could make use of the fact that anchors tend 
to not only be big but also diagnostic of scene categories in that the 
strategy would be to identify and locat them first and only in a second 
step to identify and locate the search target itself. Humans appear to use 
such a multi-stage strategy. Machines might be able to learn from us. 

We are only at the beginning of understanding the intricate ways in 
which predictions about objects in scenes are organized both in space 
and time. The role of object functions will need to be considered more 
explicitly in models trying to predict attention allocation in scenes since 
they have shown to influence attention allocation and perception (e.g., 
Castelhano & Witherspoon, 2016; Clement, O’Donnell, & Brockmole, 
2019). Most indoor scenes were created to make every day actions more 
efficient: We tend to put our toothbrush and toothpaste close to each 
other and near a sink, because this will make it more efficient to brush 
our teeth than keeping the toothbrush in a distant closet. Thus, mean-
ingful “phrases” within scenes tend to be established and organized by 
object functions and everyday actions or schemata (e.g. the “shower 
phrase” where you wash yourself, the “stove phrase” where you cook, 
the “desk phrase” where you work, etc.), a concept that has recently 
been further investigated by Josephs and Konkle (2019) “reachspaces”. 
Such hierarchical structures of scenes and spatial arrangements of 
“phrases” or “reachspaces” most likely dramatically change when 
moving from indoor to outdoor scenes, and it remains to be seen 
whether natural, i.e. not manmade, scenes actually show such a hier-
archical structure. The “functions” of nature might nevertheless show 
their own organizational grammar: In the mountains you know that 
close to a glacier you will be able to find moraines and gravel, and 
experienced mushroom seekers know how to “read” the weather and the 
forest in order to find their prey. 

9. All things considered 

Moving from highly abstract artificial tasks and simplified stimuli to 
more complex, diverse realities of the world brings about both novel, 
exciting questions and new hurdles to overcome. Stimulus control by 
necessity becomes more challenging, and the number of variables to 
consider becomes increasingly large and more difficult to measure. 
Finding the right balance between highly-controlled laboratory experi-
ments while at the same time trying to move closer to what we consider 
the “real world” will be crucial in the years to come. 

I have argued that understanding the meaning and structure of 
natural scenes is the key to understanding the efficiency of object and 
scene perception as well as search. Anchor objects seem to play a crucial 
role within the larger structure of scenes, predicting both locations and 
identities of other objects therein. We yet need to fully grasp (and 
compute) the intricate relationships between objects in scenes. Are they 
solely based on functions and tasks that we perform on a daily basis? Are 
anchor objects as we define them solely beneficial to object identifica-
tion and search in manmade scenes, where humans have built their 
environment according to the needs of their daily routines? 

Considering object functions, tasks and routines that we perform in 
our visual world, dynamics of actions and events become more impor-
tant as well. Most of the research done on scene perception, however, 

Fig. 4. Proposed hierarchical organization of a bathroom scene that includes 
three phrases that again consist of one anchor each (e.g. a shower, a toilet and a 
sink) that predict the locations of other objects (e.g. the shampoo is in the 
shower, the toothbrush on top of the sink, the toilet paper next to the toilet, etc.). 
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has dealt with still images. Scene grammar in the way we have 
conceptualized it does not explicitly include predictions about actions 
and events. Here the broader notion of schemata and scripts might be 
more applicable and worth trying to apply to some of the lingering 
questions in scene perception and search. 

Finally, with the rise of deep neural networks (DNNs) one might start 
to wonder whether we are simply very good statisticians, who over the 
course over our lives have incorporated the meaning and structure of 
scenes and perfected the use of such statistics to efficiently process them; 
or, alternatively, there is more to the human mind, and if so, what? 
Recent developments of Generative Adversary Networks (GANs; for a 
review see Karras, Aila, Laine, & Lehtinen, 2018) have been able to 
produce scenes based on a latent grammar that they have learned. Does 
this type of grammar differ from ours? If so, how? Evident differences 
between how we and such algorithms process scene information include 
that humans gather experiences not merely through passive exposure, 
but by active interactions with the world. We move in 3D space, guided 
by curiosity, motivations, and emotions. Making use of DNNs, we can 
now directly compare their performance to ours, and by doing so I 
predict that we will remain fascinated by the machinery of the human 
mind. 

10. Conclusions 

Working in the field of scene perception means navigating at the 
intersection of many diverse fields like vision science, computer science, 
philosophy, linguistics, architecture, or design. While research over the 
past decades has provided us with fascinating insights regarding topics 
spanning from human ability for ultra rapid scene recognition and gist 
processing, over massive memory for objects and scenes to efficient 
attention allocation and eye movement control in scenes, many frontiers 
still need further exploration. More concerted efforts targeting the 

intersection of seemingly disparate fields of research could create new, 
powerful synergies, which might inform scene perception in hitherto 
unthinkable ways. I hope this review is able to spark new interest for 
scene perception enthusiasts as well as newcomers to the investigation 
of the meaning and structure of scenes. 
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Helbing*, J., Draschkow*, D., & Võ, M. L.-H. (2020). Search superiority: Goal-directed 
attentional allocation creates more reliable incidental identity and location memory 
than explicit encoding in naturalistic virtual environments. Cognition, 196, Article 
104147. https://doi.org/10.1016/j.cognition.2019.104147. 

Helo, A., van Ommen, S., Pannasch, S., Danteny-Dordoigne, L., & Rämä, P. (2017). 
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Võ, M. L. H., & Henderson, J. M. (2011). Object–scene inconsistencies do not capture 
gaze: Evidence from the flash-preview moving-window paradigm. Atten Percept 
Psychophys, 73(6), 1742–1753. https://doi.org/10.3758/s13414-011-0150-6. 
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