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A B S T R A C T

Background: In the analysis of combined ET-EEG data, there are several issues with estimating FRPs by aver-
aging. Neural responses associated with fixations will likely overlap with one another in the EEG recording and
neural responses change as a function of eye movement characteristics. Especially in tasks that do not constrain
eye movements in any way, these issues can become confounds.
New method: Here, we propose the use of regression based estimates as an alternative to averaging. Multiple
regression can disentangle different influences on the EEG and correct for overlap. It thereby accounts for po-
tential confounds in a way that averaging cannot. Specifically, we test the applicability of the rERP framework,
as proposed by Smith and Kutas (2015b), (2017), or Sassenhagen (2018) to combined eye tracking and EEG data
from a visual search and a scene memorization task.
Results: Results show that the method successfully estimates eye movement related confounds in real experi-
mental data, so that these potential confounds can be accounted for when estimating experimental effects.
Comparison with existing methods: The rERP method successfully corrects for overlapping neural responses in
instances where averaging does not. As a consequence, baselining can be applied without risking distortions. By
estimating a known experimental effect, we show that rERPs provide an estimate with less variance and more
accuracy than averaged FRPs. The method therefore provides a practically feasible and favorable alternative to
averaging.
Conclusions: We conclude that regression based ERPs provide novel opportunities for estimating fixation related
EEG in free-viewing experiments.

1. Introduction

1.1. Background

Both eye tracking (ET) and electroencephalography (EEG) have a
rich history of experimental paradigms and results that have revealed
much about the workings of visual perception. Studies are increasingly
combining these two techniques into what we will refer to as ET-EEG
experiments. Where eye movements (EMs) offer a close insight into the
temporal and spatial allocation of attention, EEG is informative about
what happens in the brain before, during, and after the eyes land on a
certain region of a stimulus. EEG-only paradigms often require ob-
servers to not move their eyes and not blink during trials. Such para-
digms without eye movements (static EEG experiments) often aim to
infer the workings of perception in everyday life. But eye movements
are abundant in everyday tasks (e.g. Hayhoe and Ballard, 2005).

Allowing eye movements in experiments is a natural step towards
studying these processes in ways that generalize better to situations
outside the lab.

ET-EEG combinations have been proposed for several purposes.
These include Brain-Computer Interfacing (Brouwer et al., 2013; Hale
et al., 2008; Shishkin et al., 2016; Slanzi et al., 2017), comparing neural
responses under both static and eye movement scenarios (Dandekar
et al., 2012a), studying reading under more natural conditions
(Dimigen et al., 2011; Hutzler et al., 2013), studying early ERP com-
ponents related to saccades (Dandekar et al., 2012b; Thickbroom et al.,
1991), investigations of visual search (Devillez et al., 2015;
Kamienkowski et al., 2012; Kaunitz et al., 2014; Körner et al., 2014),
emotional processing (Simola et al., 2013), art perception (Fischer
et al., 2013), and many other contexts. As research questions have
differed in the past, so have the proposed approaches to ET-EEG
paradigms, data processing, and analysis. Here, we focus on recordings
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made during free-viewing, i.e. conditions under which eye movement
behavior was not influenced or restricted by the experimenter in some
way other than telling participants to perform a task. Under the current
definition, free-viewing could therefore occur in different research in-
terests, from reading to visual search and scene perception.

Because the signal to noise ratio (SNR) of EEG measurements is
relatively low, data from a single stimulus presentation usually do not
allow inferences about the stimulus related activity of interest. Instead,
Event Related Potentials (ERPs) are obtained through averaging (Luck,
2014). To estimate the neural response related to the onset of different
eye movements, which is what is addressed in this paper, one can apply
the same logic to ET-EEG data. Cutting periods of EEG around the onset
of, for instance, fixations and averaging these data periods, yields a
fixation related potential (FRP). But changing from ERPs to FRPs,
especially in a free-viewing scenario, involves more than merely time
locking data epochs to a different kind of event. Trying to obtain fixa-
tion-locked EEG responses introduces several analysis challenges. We
will present a possible solution to these challenges in the form of re-
gression based ERPs (Smith and Kutas, 2015a, 2015b). We test the
applicability of regression based ERP estimation to ET-EEG data, by
analyzing a standard visual search task and a scene memorization task.

ERP is a widely accepted and used term, but almost synonymous
with averaging. To indicate that the ERP was estimated using regres-
sion, Smith and Kutas (2015a, 2015b) propose the abbreviation rERP. A
fixation related potential is essentially a sub-category of ERP (the
“event” in ERP, after all, does not specify that the event has to be a
stimulus onset) and seems almost equally tied to averaging. Therefore,
we propose the abbreviation rFRP to indicate regression based esti-
mates of fixation related potentials.

1.2. Possible pitfalls and current solutions

1.2.1. Possible pitfalls in combining eye movements and EEG
Dimigen et al., (2011) point out four main issues in co-registration

and analysis of ET-EEG data. First, measuring without interference and
the (post-hoc) temporal alignment of both streams of data. Second, the
EEG artifact introduced by eye movements. Third, overlapping neural
activity caused by eye movements happening in relatively short suc-
cession. Finally, neural activity itself might be related to the char-
acteristics of an eye movement. Technical issues can be resolved in
different ways depending on make and model of hardware in individual
labs, and by using specially designed software (e.g., http://www2.hu-
berlin.de/eyetracking-eeg). Dealing with corneoretinal and myogenic
eye movement artifact is, to some extent, not new to the field. Although
close consideration of the efficacy of different correction methods for
“heavily contaminated” EEG data such as those recorded in ET-EEG
experiments is warranted, current methods seem adequate for cor-
recting EM artifact in a combined ET-EEG experiment (e.g., In-
dependent Component-based EOG artefact correction; Delorme et al.,
2012). The remaining two issues are the ones that are of interest to this
paper.

Similar to the onset of a visual stimulus, a fixation will yield a neural
response that overlaps with those from the previous and the next
fixation. The experimenter does not control the succession rate of the
eye movements and therefore does not control the degree of overlap.
Therefore, the overlap becomes a possible confound when comparing
two conditions. In the example of a visual search experiment, neural
responses measured upon target fixations can be compared to those
measured upon non-target fixations. The difference will probably be
largely due to target recognition (Brouwer et al., 2013; Dandekar et al.,
2012a; Devillez et al., 2015; Körner et al., 2014), but could be distorted
if targets are fixated systematically longer than non-targets. The shape
of this distortion will be hard to predict, due to the fluctuating shape of
the overlapping responses.

The fourth issue, the relationship between eye movement parameters
and neural activity, can be a subject of study in its own right (Kazai and

Yagi, 1999; Nikolaev et al., 2016; Thickbroom et al., 1991). When it is
not, differing EMs can confound EEG comparisons. When comparing
targets and non-targets one might interpret an early difference in FRPs
as an indicator of rapid, extrafoveal target recognition. There are,
however, early FRP responses that vary with EM characteristics such as
saccade amplitude (Dimigen et al., 2011; Nikolaev et al., 2016). What
makes accounting for EM confounds more difficult is that despite an
increase in research (Nikolaev et al., 2016) we neither know exactly
what eye movement characteristics influence EEG, nor how. This holds
especially true for late periods of FRPs. Furthermore, having a better
description of EM confounds in the EEG would only caution over-in-
terpretation of difference waves, not control for the confounds.

1.2.2. Current solutions to overlapping responses
A popular approach to minimizing overlapping responses is the

exclusion of epochs if the fixation offset falls inside the EEG period of
interest. This ensures calculation of the component is not affected by
the latency of the next saccade and fixation in any condition. Some FRP
components are, however, expected to occur relatively late after a
fixation onset, for example, the P300 (Polich, 2007) or N400 (Kutas and
Federmeier, 2011). Such late components require a minimum fixation
duration of> 600ms. Yet saccades are typically made at a rate of 3–4
per second (Buswell, 1935; Henderson, 2003; 2007; Rayner, 2009;
Yarbus, 1967) and in the fields of reading and scene perception such
long fixations are rather a-typical. Post-hoc selection of long fixations
therefore leads to a biased sample of data that does not reflect typical
eye movements and neural responses.

Researchers also restrict analysis to fixations occurring after a
minimum amount of time since stimulus onset (e.g., an estimation of
the time it takes the EEG to return to baseline after stimulus onset;
Dimigen et al., 2011), again discarding otherwise usable data. Alter-
natively, or additionally, stimuli can be chosen to cause long fixations.
Participants can also be instructed (e.g. Kamienkowski et al., 2012) or
even trained (Kaunitz et al., 2014) to prolong fixations and prevent re-
fixations of the same regions. Experiments can also be designed so that
events of interest occur always at the end of a sequence (Hutzler et al.,
2013; Kaunitz et al., 2014). While all these approaches effectively avoid
overlapping responses, they are of limited use for the kind of free-
viewing ET-EEG experiments we aim to investigate.

1.2.3. Regression based overlap correction
Current solutions focus on analyzing EEG data that do not contain

overlapping neural responses at all. Here, we propose to account for
temporal overlap by explicitly modelling it, in continuous EEG activity
(Smith and Kutas, 2015b). Similar methods have previously been ap-
plied to ET-EEG data (Dandekar et al., 2012b; Kristensen et al., 2017a,
b) and the effectiveness of the rERP framework in correcting for overlap
has been shown in simulations (Smith and Kutas, 2015b). Recently a
method using the same principals was shown to yield better results than
simple averaging in ET-EEG data (Kristensen et al., 2017a) and to be
more flexible than the popular ADJAR method (Kristensen et al., 2017b;
Woldorff, 1993). The main additional benefit of applying regression as
described by Smith and Kutas (2015b) is that it not only accounts for
overlapping potentials, but for a wide range of EM-related confounds,
through the addition of eye movement parameters as numerical pre-
dictors to the same regression models.

1.2.4. Current solutions to eye movement related confounds
In addition to preventing or excluding overlapping neural re-

sponses, researchers have aimed to prevent neural responses associated
with EM characteristics from confounding FRP analyses. Again, current
solutions involve experimental design, e.g. by restricting participants’
eye movements, so that data from all conditions contain EMs with si-
milar directions, durations, amplitudes, etc. (Brouwer, Brinkhuis et al.,
2014; Dandekar et al., 2012a; Huber-Huber et al., 2016). However, a
design that times and limits eye movements is by definition not a
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solution for investigating free-viewing.
In free-viewing scenarios, researchers have aimed to balance out EM

confounds during data processing. Commonly, a test for significant
differences in EM parameters across or within participants is employed.
A lack of statistically significant differences is then used to argue eye
movements are similar enough between conditions (Kamienkowski
et al., 2012; Kaunitz et al., 2014; Nikolaev et al., 2016; Devillez et al.,
2015). We question this application of null hypothesis significance
testing (NHST), because failing to reject the null hypothesis does not
confirm it. Instead, confound control should establish the lack of a
meaningful influence from confounding independent variables on the
dependent one (Sassenhagen and Alday, 2016). Without defining
“meaningful” in the context of EM-EEG relationships, the use of NHST
for confound control is therefore fundamentally flawed.

Finally, an EM difference between conditions might in itself be
reason for an FRP study. To relate findings from static EEG paradigms
to eye movement behavior, or to investigate what the neural correlate
of an EM effect is, comparing data with minimized EM differences is
undesirable.

In sum, current solutions to eye movement confounds involve dis-
carding otherwise informative data, and can lead to the inclusion of a
subset of data that are not representative of general eye movement
behavior. Moreover, we question whether current solutions using null
hypothesis testing actually prevent eye movement confounds.

1.3. The rERP procedure

The alternative proposed here is to account for both temporal
overlap and EM related EEG confounds through linear regression. More
specifically, we apply the rERP framework proposed by Smith and
Kutas (2015a, 2015b; see also Hauk et al., 2009) to ET-EEG data. The
framework extends previous regression based approaches, mainly by
incorporating numerical predictors (see below) to account for EM
confounds. To investigate the use of rERPs in ET-EEG data, we recorded
EEG and eye movements simultaneously while participants performed a
visual search task. Visual search should yield a distinct difference in
EEG responses upon fixation of a target versus fixation of a distracter
(the P300 component; Polich, 2007). The recorded data are used to
inspect whether the rERP framework provides sensible estimates of
confounds to the P300 in the example experiment. Additional data were
recorded during a scene memorization task. These data serve as a
comparison where applicable and are included for two reasons: Firstly,
to show robustness of the rERP method across participants and tasks.
Secondly, to show the influence of using stimuli that are more natur-
alistic and thus vary in physical characteristics more strongly. Although
a brief introduction to regression based estimation of ERPs is given
below, we refer the interested reader to the original publications (Smith
and Kutas, 2015a; 2015b) for a more elaborate and complete descrip-
tion.

1.3.1. A brief description of the rERP framework
The rERP framework offers an alternative to estimating ERPs by

averaging. Rather than average epochs across trials at each latency to
the time-locking event, a linear model could be fitted at each latency.
Within this model, the traditional event (e.g. a stimulus onset or a
fixation) becomes a predictor. A simple model would be:

= +y β x noisei i i1 1

Where y is the EEG, i represents a trial number, x1 is a predictor value
and β1 is a regression coefficient. Here, x1 only takes the value 1 be-
cause a fixation either happened or it did not. β1 can then also be called
the “intercept term” of the fixation event. The yi values are set to the
measured scalp potential at a single electrode, at a single latency, across
different time-locked trials. Since the values of yi and x1i are known, β1
can be estimated by minimizing the squared noise: We assume Y=XB,
where Y represents the EEG data, X a matrix of predictor values, and B a

matrix of β values. The β values can then be estimated as B =
(XTX)−1XTY, where XT is the transpose of X. Estimating β values is also
known as fitting the model to the data.

The estimated value for β1 represents the estimated influence of the
predictor x1 on the EEG. By plotting the different β1 values (each ob-
tained from fitting the model at a single latency within the epochs) in
temporal order, a waveform of β values emerges. This waveform is the
regression based ERP, or rERP. When there is no overlap in neural re-
sponses, this waveform actually is the mathematical equivalent of an
average across time (Smith and Kutas, 2015a). Its unit is the same as the
dependent variable, in this case microvolts, and these waveforms can be
baselined and statistical tests can be performed on them as if they were
an ERP subject average.

1.3.2. The inclusion of eye movements as numerical predictors
So far, FRP averaging was re-defined in regression terms. Yet there

are other advantages of linear estimation of ERPs. Multiple predictors
can be added to the model and, given sufficient data, it will separate the
influence of these predictors. Such as:

= + + … + +y β x β x β x noisei i i n ni i1 1 2 2

What is more, its predictors need not be 0’s or 1’s. Linear estimation
allows for the inclusion of numerical predictors. The resulting rERP
waveform (a so-called slope-rERP) then represents the change in EEG
that is related to one unit change in the predictor value. This could, for
instance, represent increased negativity in the N400 time window as
the cloze probability of a fixated word decreases (cf. Dimigen et al.,
2011). Linear estimation of ERPs with intercept terms as well as nu-
merical predictors has been applied before (Ehinger et al., 2015;
Rousselet et al., 2010, 2009; Rousselet et al., 2008), and it applies to
ET-EEG because it allows entering the rich description of the eye
movement behavior measured with the eye tracker, as predictors into
one regression model. This is different from using regression only to
correct for overlap. The main interest of Dandekar et al. (2012b), for
example, was to study the EEG response around a saccade. Although the
authors did construct different linear estimates for different saccade
sizes, the regression only served the purpose of correcting overlap.
Here, we go one step further, mainly to account for any EEG changes
related to eye movements rather than study them. Only correcting for
overlap will therefore not suffice. Analysis also needs to account for
changes in neural responses as a function of eye movements. To achieve
this, the eye movements are explicitly modelled using numerical pre-
dictors. A model that takes into account saccade amplitude, for ex-
ample, can then be defined as:

= + +y β x β x noisei fixation fixation saccadeAmplitude saccadeAmplitude ii i

This model contains one intercept term for all fixations (rather than
bins) under the assumption that different predictors (e.g. incoming
saccade amplitude) add to or subtract linearly from this intercept.1 The
influence of saccade amplitude is now estimated in the presence of
other predictors, rather than used as a dimension to bin along, or to
exclude EEG data points (like when using matching procedures before
averaging). Models may include many more eye movement parameters
than just saccade amplitude. Similarly, the experimental manipulation
can be included as another predictor influencing the same fixation in-
tercept. In a search task, for instance, one would add a predictor that
codes whether a fixation fell on a target or not, along with any other
predictors thought relevant:

= +

+ + … + +

y β x β x

β x β x noise

i fixation fixation saccadeAmplitude saccadeAmplitude

targetFixation targetFixation n ni i

i i

i

1 We will return to the validity of such an assumption and model construction
in general in the Discussion section.

T. Cornelissen et al. Journal of Neuroscience Methods 313 (2019) 77–94

79



From the equation above, it follows that the process of estimating
the influence of different predictors minimizes their confounding effects
on one another. That is, variance in the data that the model attributes to
one predictor cannot be attributed to another predictor - as it would
during averaging if there is any correlation between predictors.
Variance that the model estimates to be due to eye movement char-
acteristics therefore cannot be attributed to the estimated effect of the
fixation being on a target. This is a key difference between averaged
FRPs and rFRPs. In contrast to linear estimates, FRPs are used to isolate
one effect at a time, by binning data under the assumption that the bins
only differ along one dimension before averaging and comparing them.
When constructing FRPs from free-viewing data, the assumption of bins
being different along a single dimension is problematic, as outlined in
Section 1.2. Critically, multiple regression does not require data-points
to vary along a single dimension, but takes all data into account si-
multaneously and “disentangles” the influence of multiple predictors in
a single model fit. Thus, continuous predictors eliminate the need to
categorize a continuous parameter such as saccade size into bins
(Dandekar et al., 2012b). We know of only one example in the literature
including EM parameters as continuous predictors in the linear esti-
mation of rFRPs (Weiss et al., 2016). The authors, however, gave no
indication of the efficacy of the method.

1.3.3. Adding overlap correction
So far, rFRPs were constructed fitting a model per time-point in

epoched data. Yet if epochs contain multiple fixations, overlap con-
founds still exist. The series of models that estimate rFRPs can be
transformed into a model that corrects for overlap, by entering the
value of the same predictor multiple times, at different latencies (Smith
and Kutas, 2015b). One predictor then effectively becomes multiple
predictors and multiple models at different time lags become one large
model that estimates the influence of the predictors from the con-
tinuous data of each electrode. For example, one could include the
predictors “fixation at latency -200ms” to “fixation at latency+700
ms”, with the total number of “fixation ± xms” predictors depending
on the sampling rate.

In Fig. 1, this leads to the diagonal lines seen in the design matrix.
Each diagonal is the set of predictor values associated with a single eye
movement event. The predictor “element fixation onset, latency
-200ms” has value 1 at any sample that is taken 200ms before the
onset of a fixation on a search element and a 0 at any time point that is
not. At each time point (best imagined as a horizontal line through the
data and the design matrix), the EEG data can now be thought of as the
result of multiple fixations, at different latencies since onset. Another way
to describe the same design matrix is to say that each column is a se-
parate predictor. By adding events at different latencies as separate
predictors, the overlap correction becomes another matter of estimating
the influences of multiple predictors, which can be achieved by solving
the least squares problem just as before. In terms of Fig. 1, this means
that we model the EEG data to be the product of the β values and the
design matrix (Y=XB in the figure). Because we know the design
matrix and the data, we can estimate the β values (b). The rERP for
“element fixation onset” is now constructed by plotting the β values of
all “element fixation onset ± xms” in temporal order (the bottom
waveforms in Fig. 1). By estimating β values per latency, the value of
the rFRP can vary arbitrarily per time point, but always and only based
on the data.

1.3.4. Testing the efficacy of the rERP framework in ET-EEG data
Given that overlap correction by means of linear regression is ef-

fective (Kristensen et al., 2017a, 2017b), and a theoretically sound way
to include numerical predictors when estimating rERPs (Smith and
Kutas, 2015a) one goal of the current paper is to test whether linear
estimates yield sensible results in real, experimental ET-EEG data. To
this end we recorded data in a visual search task in which participants
searched through an array of abstract elements on a gray background,

as well in a scene memorization task with more variable stimuli. To
these datasets, we applied the type of linear models described above
and detailed below. Fitting such models will yield an rERP for each
predictor (e.g. the bottom four waveforms in Fig. 1). The rERP re-
presents the closest linear estimate of a predictor‘s influence on the EEG
associated with the event it is time-locked to. The goal is to account for
these predictors’ influences. Therefore, the key question to answer first
is whether the output of fitting the model represents sensible estimates
of eye movement influences. To do this, we attempt to isolate the effects
of different predictors in the current data, and compare the outputs of a
model to such an “isolation” of each predictor.

Ironically, the current gold standard for isolating the effect of a
single predictor on EEG, is to generate averaged FRPs. FRPs yield less
than perfect estimates for the dimension along which bins are con-
structed, for reasons outlined in previous sections. FRPs are, however,
the only standard available, with a fairly good understanding of its
imperfections. As an imaginary example, let participants freely make a
series of fixations. To infer the influence of vertical position, fixations
can be binned, e.g. one bin for fixations above center of screen, and one
bin for all fixations below center. Averaging both bins and subtracting
their averages yields an isolation of the influence of vertical position:

FRP Fixations above center – FRP Fixations below center = FRP Difference Wave
Vertical position

All the objections previously raised about this kind of comparison
still hold (bins might differ along other dimensions than vertical posi-
tion too, and bins are not corrected for overlap). Still, a linear estimate
of the influence of the predictor “vertical position” should resemble the
FRP difference wave. Moreover, the rFRP should resemble its paired
FRP, but not the FRPs for the other predictors. Below we make such
comparisons for each predictor in an rERP model. Results for both
search and scene memorization indicate that the rERP framework ac-
counts for eye movement differences in the data in a sensible manner
and provides a better estimate of experimental effects than FRPs.

2. Visual Search Task

2.1. Methods

2.1.1. Participants
Sixteen participants recruited at the Goethe University Frankfurt

took part in the visual search experiment (9 female, median age 24, min
19, max 37). All were tested for normal or corrected to normal vision
and had normal color vision as assessed by the Ishihara test. None re-
ported any neurological disorders. All participants received course
credit or financial compensation and had given informed consent ac-
cording to protocols approved by the ethics committee of the depart-
ment.

2.1.2. Apparatus
Eye movements were recorded with an EyeLink 1000 desktop

mounted eye tracker (SR Research, Canada) at a sampling rate of
500 Hz. Viewing was binocular, but data were recorded from the left
eye only. The experiment was run on a computer running Windows 7.
Stimulus presentation was controlled by MATLAB (Version 8.1.0.604),
making use of the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997).
Subjects were seated in a dimly lit room with their heads fixated in a
chinrest, in front of a 24-in. computer screen with a refresh rate of
144 Hz and a 1920× 1080 resolution. Viewing distance was approxi-
mately 65 cm. To prevent EEG artifacts caused by pressure on the
frontal electrodes, no forehead rest was used. Instead, frequent drift
checks were included and participants were instructed to relax their
neck muscles but move as little as possible. The eye tracker was used in
remote mode (as opposed to “head fixed” mode), so that small head
movements were better compensated and fewer recalibrations were
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required. This came at the cost of slightly higher variable error in the
eye tracking signal. This did not visibly influence classification into eye
movements event though, and since events rather than raw data served
as predictors for rERPs, the added noise was assumed non-problematic.
EEG signals were recorded using 64 active electrodes (actiChamp, Brain
Products), positioned according to the 10–20 system. All EEG signals
were referenced to the mastoids. Electrode positions SO2, LO1, LO2,
and FP1 were used to measure EOG activity. All EEG signals were re-
corded at a sampling rate of 1000 Hz. To allow post-hoc temporal
alignment of ET and EEG data, shared triggers were sent to the EEG
amplifier and the recording computer of the eye tracker, making use of
a parallel port and an Ethernet connection respectively. Synchroniza-
tion triggers were sent at the onset and offset of every trial.

2.1.3. Stimuli and procedure
For 250 trials plus 5 additional practice trials, participants searched

for two identical targets among a grid of 14 search elements. All search
elements were crosses, presented on a grey background (RGB values
(128,128,128)). Targets consisted of a yellow horizontal bar and a
light-grey vertical bar, with the overlap between bars colored in black.
Distractors consisted of the same parts, but with the orientation of the
bars switched (grey horizontal, yellow vertical). Participants were in-
structed to search for two crosses with a yellow horizontal bar and press
a button on the keyboard as soon as they had located the second target.
Additionally, observers were instructed to do so as fast and as accu-
rately as possible. Targets and distractors spanned an angular size of
0.4° by 0.4°, making identification without foveation difficult. All
search arrays fit within a 14.5° by 14.5° central portion of the screen.

Search element positions were determined by defining a 5 by 5-position
hexagonal grid within the stimulus area. In each trial, a random jitter in
both horizontal and vertical direction (max 0.8°, ¼ of the minimum
distance between grid positions) was added to each position. Then, 14
positions were pseudo-randomly selected from all positions in the
hexagonal grid, excluding the position closest to the center of the
screen. Trials consisted of a central fixation cross, presented for
1200–1700ms, followed by the onset of the search array while the
fixation cross remained visible. The search array remained on screen
until a button was pressed by the observer to indicate that a second
target had been found. Upon button-press the search array remained
visible for an additional 80–120ms before disappearing, indicating the
start of the next trial (Fig. 2). The experiment was preceded by a 13-
point eye tracker calibration and validation procedure. Calibration was
deemed successful when the average validation deviation was lower
than 0.5° and none of the validation points yielded a larger deviation

Fig. 1. Visualization of the linear model. The left matrix represents the continuous data, colored positions in the design matrix represent non-zero values, and the
bottom four waveforms represent the rERPs that result from fitting the model. EEG responses can also be predicted, by multiplying the design matrix by the
regression coefficients (the rERPs). In this case, the obtained time series represent the predicted continuous neural data and not the measured data.

Fig. 2. Schematic depiction of a trial sequence. Elements are enlarged for dis-
play purposes and fewer elements are shown than were present during the
experiment.
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than 0.7°. Calibration and validation were repeated when drift-check
was unsuccessful, or additionally at the discretion of the experimenter.
An optional short break and a non-optional drift-check for the eye
tracker occurred every 30 trials. After a successful drift check (a mea-
sured deviation between dot position and gaze of less than 1°), the
fixation cross re-occurred, signaling the start of the next trial.

2.1.4. Data pre-processing
Saccades and fixations were extracted from raw gaze data during

recording by the EyeLink parser. Velocity and acceleration thresholds
were set to the EyeLink default values of 30 °/s and 8,000 °/s2, re-
spectively. Fixations were attributed to the element nearest to the
fixation, with a maximum distance of 2 ° (cf. Hessels et al., 2016). We
distinguished first fixations of the first target (whichever of the two
targets was fixated first) and the first fixation of the second target. In
case only one fixation on a target was made, it was classified as fixation
of a second target because the data do not allow us to determine
whether a misclassification occurred before or after the single target
fixation. Moreover, mislabeling a fixation as first target fixation could
lead to measuring a P300 FRP contaminated with activity due to
button-press (preparation). Only fixations with a duration longer than
100ms were included when defining target fixations.

EEG data were imported into EEGlab (Delorme and Makeig, 2004).
Using the EYE-EEG toolbox (http://www2.hu-berlin.de/eyetracking-
eeg), eye movement onsets were temporally aligned with the EEG data.
The EEG was then band-pass filtered at 1–40 Hz and saved separately
for ICA. Data were also band-pass filtered at 0.1–40 Hz for further
analysis. After excluding breaks, overly noisy periods and overall noisy
electrodes, ICA was performed on non-epoched, non-down-sampled
data using AMICA (Delorme et al., 2012; Palmer et al., 2012). To select
independent components (IC’s) that reflected eye movement artifact, a
variance ratio threshold was applied (Plöchl et al., 2012). For all
components, the average variance in activation during saccade periods
and during fixation periods was calculated. Any component of which
the variance during a saccade was more than 1.1 times as large as
during a fixation, was marked as eye movement related (1.1 is the cut-
off recommended by Plöchl et al. (2012) and visual inspection of the
selected IC’s yielded no reason to adapt this). The weights resulting
from ICA were then transferred to the less heavily high pass filtered
data, followed by exclusion of the IC’s marked as artefactual by the
variance ratio threshold method. After filtering and artefact correction,
further pre-processing and analyses were performed using MNE-Python
(Gramfort et al., 2013), version 0.14.1. After importing data into MNE-
Python, noisy electrodes were interpolated using the spherical spline
interpolation method implemented in MNE python, and signals were
down-sampled to 500 Hz. Down-sampling to 250 Hz or 100 Hz yielded
almost identical results and made no difference for any of the conclu-
sions drawn. Computations were, however, faster and more memory-
efficient at 250 Hz and 100 Hz. At 100 Hz, calculation time was about
an order of magnitude shorter than for data down-sampled to 500 Hz.

2.1.5. rERP model definition
The applied model was defined to contain intercept (binary) terms

for stimulus onset events, stimulus offset events, button press events
and fixation onsets. We distinguished between fixations on search ele-
ments and fixations on stimulus background (by including a different
intercept term for both). Time-locked to each fixation onset were also
the numerical predictors associated with EM parameters. Modeled EM
parameters included horizontal fixation position, vertical fixation po-
sition, incoming saccade amplitude, the incoming saccade angle sine
component, and incoming saccade angle cosine component. Sine and
cosine components of the same angles were included as separate pre-
dictors to account for circularity. Fixation positions in both horizontal
and vertical direction were scaled to range from -1 to 1, with the edges
of their range corresponding to the edges of the display and with 0 at
the center of the display. Sine and cosine are naturally scaled from -1 to

1. Saccade amplitudes were added in degrees and not centered or
scaled, in order to obtain an easily interpretable slope which signifies
additional EEG per added degree of incoming saccade amplitude.
Statistics and distributions of the eye movement characteristics in-
cluded as covariates can be found in the supplementary materials. A
binary predictor for first fixations of a first search target was added, as
were a predictor representing first fixations of a second search target,
and an intercept term for button presses. For overlap correction, each
predictor was added for latencies ranging from -400 to 1000ms, pre- to
post fixation onset.

2.1.6. rERP artifact rejection
For artifact rejection, continuous data were treated as one second

periods. Any period containing voltage fluctuations larger than 100 μV
was excluded from analysis. To exclude data, the corresponding time-
points were removed from both the data and the predictor matrix be-
fore fitting the linear model. Blinks were handled in the same manner as
other artifacts, i.e. by removing data and predictors surrounding the
blink. Data from 300ms before blink onset, until 300ms after blink
offset were removed. Artifact rejection, construction of the predictor
matrix, and solving the least squares problem were handled by the
function linear_regression_raw() included in MNE-Python.

2.1.7. Constructing grand average rFRP waveforms
The procedure fits the specified model to the continuous data from

each electrode individually, for each participant individually. This re-
sults in an rERP for each electrode, per predictor, per participant, si-
milar to what regular averaging would yield (an average per participant
per electrode), except a model fit estimates the influence of multiple
predictors at once. When averaging across fixations instead, only the
influence of the binned “predictor” is estimated (often the difference
between two experimental conditions). Just like ERPs or FRPs, rERPs
are subsequently averaged across participants to obtain a grand
average.

2.1.8. Quantifying model performance
Overall model performance was inspected by means of a five-fold

cross validation, within each participant. EEG were split into 5 con-
secutive equal-length parts. For each of the 5 folds the model was fitted
to the remaining 80% of the data. The score for the fold was then ob-
tained by predicting the EEG in the fold from the fitted model coeffi-
cients (i.e., the rERPs), and correlating the prediction to the real data.
Squaring the correlation coefficient while retaining its sign yields the
amount of variance in the real data that can be explained by the model.
A score per participant is obtained by taking the median across elec-
trodes within each fold, and then averaging across folds. A score for the
whole model is obtained by averaging participant scores.

2.1.9. Creating FRPs
To calculate FRPs, for each participant, 1300ms epochs were cut

around each fixation (−300ms to 1000ms). Only epochs from fixations
that fell upon a search element were included. Fixations on the target
that were shorter than 200ms were dropped from analysis. Short
fixations have been argued to be functionally different from longer ones
(e.g. Kingstone and Klein, 1993; Kapoula and Robinson, 1986). Ad-
ditionally, a higher minimum such as 500ms would have been pre-
ferable to prevent averaging across overlapping responses. However,
the cut-off was set to this specific duration because we aimed to mea-
sure naturalistic viewing behavior and therefore did nothing to ma-
nipulate subjects towards making long fixations. If a 500ms inclusion
criterion was applied, too few fixations were left for a valid comparison
to rFRPs. Note that no fixation duration cut-off is needed or was set for
rERPs. Any epochs containing blinks (as detected in the ET signal) or
voltage fluctuations larger than 100 μV were dropped as artefactual. For
EM parameter FRPs, epochs containing target fixations or button
presses were excluded.
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2.1.10. Binning eye movement parameters
The remaining epochs from each individual participant were then

binned, matched and averaged within each participant, several times.
The binning each time consisted of dividing the data into two extremes,
corresponding to the predictors included in the linear model described
above. Epochs associated with fixations falling right vs. left of the
middle of the screen (to isolate horizontal viewing position related EEG
differences), above vs. below the middle of the screen (vertical posi-
tion), incoming saccades that contained rightward movement vs in-
coming saccades moving leftward (cosine), upward incoming saccades
vs downward incoming saccades (sine), and finally large vs small in-
coming saccade amplitudes. Large versus small was determined by
taking the 5th to 50th percentile (small) and 50th to 95th percentile
(large) of all saccade amplitudes from the participant’s included data.
For all eye movement-related bins (all the ones mentioned thus far)
epochs that overlapped with a target fixation or button press were ex-
cluded (see below), as were epochs containing blinks. Finally, fixations
on distracters vs fixations on targets were binned.

2.1.11. Matching bins by eye movement parameters
For each pair of bins, an attempt was then made to minimize the

difference between the epochs in the two bins, on all eye movement
variables (the same ones as included in the linear model) except the
variable of interest. To this end a method similar to that proposed by
Nikolaev et al. (2016) was implemented. Data from both bins were
merged and Mahalanobis Distance (MD) between each epoch and every
other epoch was calculated. Then, an iterative procedure was followed.
The first step consisted of removing epochs based on MD, with a per-
centile cut-off and a proximity cut-off (see Nikolaev et al., 2016). The
next step was to apply a non-parametric permutation t-test on each
variable and to repeat both steps in case of any significant differences.
For more than half the participants in both tasks, different variables
would yield significant differences as the cut-off was lowered, until
(almost) no epochs were left for analysis. This brings into question the
feasibility of matching epochs along a large number of variables. Ulti-
mately, a one-time percentile cut-off of 95% was applied to attain some
degree of matching. For the visual search dataset, more distractor
fixation related epochs were obtained than target fixation related ones.
For the target and distractor related epochs we therefore followed a
procedure in which all target fixation related epochs were kept and
used as a reference distribution. The subset of distractor fixations with
the smallest MD to the reference distribution was included for analysis.
The size of the subset was set to the number of included target fixations.
The number of resulting epochs per bin can be found in the supple-
mentary material (Table 1). For each pair of bins the same averaging
procedure was then applied: per participant, both bins were averaged
and subtracted, yielding a difference wave per participant. Lower pre-
dictor values were always subtracted from higher ones. Individual dif-
ference waves were averaged to obtain a grand average difference wave
per predictor.

2.1.12. Excluding target fixations and button presses from EM related FRPs
and rFRPs

For a comparison of FRPs and rFRPs in similar data, the linear
model was fit twice: Once with target fixations and button presses ex-
cluded and once with these events included (to obtain a linear estimate
of the P300). In the rERP approach these events are explicitly modeled
and can be left in the data. However, in order to compare FRPs and
rFRPs based on data as similar as possible, target fixations were also
excluded from the data and the predictor matrix when estimating the
EM confound rFRPs. Exclusion was accomplished the same way as ar-
tifact rejection: by excluding all events within -400 to 1000ms pre- to
post fixation onset. Therefore, in supplementary Table 1 the number of
fixations for rFRPs could have been higher had target fixations and
button presses not been excluded. Conversely, although roughly 200
first target fixations were included in the rFRP estimate of the P300, it

was derived from a model that had a much higher number of non-target
fixations included, all off which could aid the robust estimation of EM
confounds.

2.1.13. Significance testing
Where needed, statistical significance of waveforms was judged

with a spatio-temporal cluster-based permutation t-test of the target-
distractor difference waves against 0. The test corrects for multiple
comparisons of different electrodes at different time points by only
retaining significant spatio-temporal clusters of the t-statistic. In short,
the obtained data are used to bootstrap a distribution of clusters of the
t-statistic under the null hypothesis. The null hypothesis is simulated by
assigning a random sign (- or +) to all samples in each bootstrap
iteration (2000 iterations). From each permutation iteration, peak
cluster values are stored. The p-value for the spatio-temporal clusters of
t-statistics obtained from the original data is then determined by the
proportion of clusters in the simulated distribution that is larger than
the obtained cluster (Maris and Oostenveld, 2007).

2.2. rFRP-FRP Comparison results and preliminary discussion

First, we will compare the predictors for EM confounds to their FRP
comparisons. Then, we highlight the issue of pre-fixation activity and
baselining. Subsequently, we will compare the rERP for the predictor of
experimental interest (fixating a target object) to a traditional, averaged
estimate of the same effect.

2.2.1. The goal of comparing rFRPs for eye movement characteristics to FRP
difference waves

In the absence of some form of ground truth for comparison, it is
impossible to calculate if an rFRP or an FRP is “more correct”, even if
the nature of regression makes that the rFRPs are less confounded by
the shortcomings of FRPs. Therefore, this first comparison does not
primarily serve to determine what method is better. Theory tells us the
rFRP is a more suitable estimate. The goal is to ascertain that the es-
timated rFRPs are sensible estimates of EM confounds. Establishing that
rFRPs estimate confounds well in a typical task like visual search, is a
key step in showing the potential of the method for ET-EEG research.

2.2.2. Interpreting rFRPs and FRP difference waves
rFPRs can be interpreted of as follows: There is EEG activity that is

common to each fixation, which is expressed in the fixation intercept
term. The rFRPs for other fixation related predictors add to this inter-
cept linearly. The estimated intercept term for fixations is shown in
Fig. 3.

All obtained rFRP waveforms except for the fixation intercept term
and the one for target fixation will represent a slope: the addition to the
fixation intercept with each unit increase of the predictor. As an ex-
ample: Horizontal and vertical position were centered on the middle of
the screen with values scaled from -1 (bottom or left of the screen) to
+1 (top or right of the screen). To interpret this rERP, one can imagine
a fixation i landing half-way between the center and the left border of
the screen. The predictor for horizontal position here takes value -0.5.
Ignoring other predictors, the expected EEG in relation to fixation
would comprise the fixation intercept, plus -0.5 times the rFRP for
horizontal position, as expressed in the equation below. The same logic
applies to vertical position, sine, cosine and saccade amplitude pre-
dictors.

= −EEG rFRP rFRPˆ 1 * 0.5 *fixation fixation horizontalPositioni

FRP difference waves, on the other hand, represent the difference in
EEG related to whatever difference in the binned predictor was present
between the two bins it stems from. By this logic, the difference waves
should be scaled versions of the rFRPs. However, this scaling should
only serve as a rule of thumb, as this will only hold if the FRPs are
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perfect isolation of one predictor, without overlapping responses
(which they are not).

2.2.3. Comparison of FRP difference waves to rFRPs
If the rERP model is accounting for variance due to eye movements

in a sensible manner, the rFRP and FRP difference wave for one pre-
dictor should resemble one another. More specifically, we expect the
rFRP associated with a predictor to resemble the FRP difference wave
associated with that same predictor, but to be less similar to the dif-
ference waves constructed for other predictors. Absolute voltages
should be left out of the comparison, because all presented rFRP wa-
veforms (except the one for target fixation) represent a slope. Fig. 4
depicts the grand average difference wave and grand average rFRP per
predictor. Indeed, there is a striking similarity between each rFRP and
the associated difference wave. Also, none of the rFRPs bear strong
resemblance to FRP difference waves that depict other predictors. To
quantify this claim, correlations between both time series were calcu-
lated.

For each participant, correlations were obtained by concatenating
the data from all electrodes. This was done for both the FRP difference
waves and rFRPs. Then, a Pearson correlation coefficient between both
series of data-points was calculated, yielding a single correlation coef-
ficient per participant, for each rFRP and its corresponding difference
wave. Absolute correlations are less informative here than in the typical
case, because we predict that rFRPs and FRPs are similar, but also that
rFRPs suffer from fewer confounds and are thus not identical to FRPs.
We therefore inspect how correlation coefficients compare to one an-
other. To this end, additional correlations were computed, between the
rFRP of each predictor and the difference wave constructed for every
other predictor. To meet our criterion, each rERP should have a higher
correlation to the difference wave of its own predictor, than to the
difference wave for any of the other predictors. Fig. 5 clearly shows this
pattern. This, together with Fig. 4, indicates that the linear model yields
sensible estimates of the influence of eye movement parameters on the
EEG.

2.2.4. Pre-fixation activity
None of the waveforms in Fig. 4 have been baselined. This was done

because pre-fixation activity obstructs choosing a neutral baseline
period. Baselining through activity could induce spurious voltage
changes in later time windows. Lack of a neutral baseline has been
recognized as a problem for FRPs (e.g. Nikolaev et al., 2016). Ad-
ditionally, without overlap correction one cannot tell whether pre-
fixation activity is preparatory activity, or an artefact caused by aver-
aging over activity related to previous fixations. In contrast to FRPs,
rFRPs are overlap corrected and show notably less pre-fixation activity.
This makes it easy to choose a baseline as the researcher sees fit and
allows the interpretation of pre-fixation differences between conditions

of an experiment.
As expected, both FRP difference wave and rFRP for saccade am-

plitude (Fig. 4 - 3rd row) resemble an increase in lambda activity as a
function of saccade amplitude. The lambda response is characterized by
a positive peak in occipital activity, around 90ms post fixation onset.
We briefly highlight this finding because it fits with existing literature
(e.g. Thickbroom et al., 1991). Furthermore, as an example of the ar-
gument about baselining, the rFRP contains very little activity before
fixation onset (t0), whereas the difference wave shows clear signs of
contamination by what are probably visual responses related to the
previous fixation, as also observed by Dimigen et al. (2011). The likely
reason this is visible in a difference wave for saccade amplitude is that
saccade amplitude and fixation duration are at least weakly correlated
(Nuthmann, 2017). The absence of pre-t0 activation in the rFRP in-
dicates that overlap was successfully corrected, whereas it is clearly
present in the FRP difference wave.

2.2.5. P300 effects
In the example search task, the waveform of experimental interest is

the one that contrasts target fixations to distracter fixations, expected to
yield a P300 effect (Brouwer et al., 2014; Devillez et al., 2015;
Kamienkowski et al., 2012; Körner et al., 2014). The P300 to target
detection is characterized by a positive signal deflection over occipito-
central electrodes (Polich, 2007). A P300 effect of first target fixation is
visible in both the rFRP and the target - distracter difference wave
(Fig. 6). The positive deflection in the FRP difference wave reaches
peak activation earlier. However, with a 200ms minimum fixation
duration cut-off, overlap confounds cannot be excluded. The earlier
peak appears in occipital regions, which are also influenced by activity
from previous or subsequent fixations. Fixations on the first target
lasted 315ms on average (standard error across participants 18ms).
Additionally, there is a negative deflection in the difference wave
shortly after target fixation onset, which is absent from the rFRP. Pre-
vious literature provides no reason to expect differences in this early
time-window or with this topography.

A cluster-based permutation t-test yielded a significant P300 effect
in both FRPs and rFRPs, with similar time-courses. The early negativity
in the FRP difference wave, however, was not a significant deviation
from 0. Baselining the waveforms by subtracting the average activity in
the -50 to 150ms time window did not change this result.

A signal estimate can contain both systematic errors, sometimes
called biases, and variable errors, often expressed as variance.
Inspection of cross-subject variance reveals that variance is generally
higher for the FRPs. As an example, Fig. 7 depicts the P300 effect at a
single electrode along with its 95% percentile-bootstrap confidence
interval. Before computing the confidence interval each participant’s
difference-wave was baselined by subtracting the average activity in the
-50 to 150ms time window (cf. Dimigen et al., 2011). A baseline was

Fig. 3. Grand average intercept rFRP for fixations on search elements.
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applied here to prevent the variance in P300 estimation across parti-
cipants from being obscured by offset differences across participants.
Variance is clearly larger in the FRP-based waveforms than in rFRPs.
Fig. 7 also shows more clearly the unexpected negativity over occipital
electrodes in the difference wave. This shows that the FRP comparison
between targets and non-targets has higher variable error than the
rFRP, and that the FRP-based waveform also contains a more systematic
error that is absent from the rFRP.

2.2.6. A qualitative example of overlap correction: button presses
In the dual-target search task, detection of the second target was

followed by a button press. The averaged FRP difference wave asso-
ciated with the second target fixation (versus a matched set of non-
target fixations) is depicted in Fig. 8 (top panel). The observed P300
amplitude is much larger than for the first target fixation (middle
panel). Additionally, the difference wave deflects in negative direction
for almost all electrodes towards the end of the time-window, rather

Fig. 4. Grand average rFRP waveforms (right column) and grand average FRP difference waveforms (left column) per predictor.
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than returning to baseline. Both the high amplitude and the continued
activity beyond the P300 time window are likely caused by con-
tamination of the FRP with neural activity related to (the preparation
of) the button press, which happened an average 751 after target
fixation (standard error across participants 52ms). These findings are
comparable to those by Hale et al. (2008). Assuming the neural activity
related to a button press is the same each press, and that button presses
happen at sufficiently varying latency from fixation onset, regression
should correct for the overlap between the button press related re-
sponse and the response that is evoked by the target fixation. Fig. 8
shows the overlap corrected rFRP of second target fixation (bottom
panel). The rFRP is more similar to the difference wave observed in
relation to first target fixation (middle panel) and returns to zero around
800ms post-fixation. This highlights an additional benefit of rERPs. In
the current task, for example, participants searched for two targets. The
second target was only included so that manual responses and fixations
to at least one target happened sufficiently far apart in time. Although
needed here for averaging, overlap correction frees the researcher from
these kinds of design considerations.

2.2.7. Overall model performance
Overall, the model including target fixations explained 8.7 percent

of the variance in the real data. Additionally, Fig. 9 shows the amount
of explained variance across the scalp. The fitted model explains a
substantial fraction of variance over occipital electrodes, i.e., assuming
the rERP model allows the accurate prediction of brain activity, parti-
cularly in occipital regions, in the continuous EEG data. This finding fits
existing literature, in a sense that occipital regions are also where most
(fixation locked) variance in neural activity is expected to occur. Ex-
plained variance is indicative of overall model performance. Note,
however, that in data with a low SNR, like EEG, successfully estimated
but small systematic confounds will hardly influence the amount of

explained variance. The same confounds can nevertheless distort fixa-
tion locked waveforms. The decision to in- or exclude predictors should
therefore not be based on overall explained variance alone (see “Pre-
dictor inclusion” under Section 5).

3. Scene memorization task

To test the rERP method on less controlled stimuli than the abstract
search arrays, and to inspect its applicability across tasks, we also
gathered data from participants viewing photographs of indoor scenes.
Participants were instructed to memorize photographs of indoor scenes
in preparation for a subsequent memory test. Below, details of the scene
memorization experiment are described where they differ from the
search experiment. A subset of presented scene photographs included
experimentally manipulated objects. Fixations on these objects were
excluded before rFRP-FRP comparisons, in the same way target fixa-
tions were excluded from the visual search data.

3.1. Methods

3.1.1. Participants
Twenty-two different participants took part in the scene memor-

ization experiment: 14 female, average age 26 (18–47). As before,
participants were screened for exclusion criteria and gave informed
consent in accordance with the department’s ethics committee.

3.1.2. Apparatus
Data were collected and processed with the same equipment, setup

geometry, and settings as the visual search task. However, the eye
tracker was used in “head-fixed” mode and eye movements were re-
corded at 1000 Hz. Frequent drift-checks were implemented to ensure
head-movement would not cause large systematic inaccuracies in the

Fig. 5. Mean correlation coefficients across participants, between each rFRP (horizontal axis) and the FRP difference wave for each predictor. Error bars indicate 99%
percentile bootstrap confidence intervals (2000 resampling iterations).

Fig. 6. Grand average waveforms for the effect of fixating a target element. Left: averaged FRP difference wave. Right rERP estimate for a model predictor re-
presenting first target fixation.
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eye tracker signal.

3.1.3. Stimuli and procedure
Observers viewed real-world scenes for 7 s each in preparation for a

memory test. To ensure maintained attention, observers were ad-
ditionally instructed to monitor for exact repeats of scenes presented
before. An additional 20 scenes were presented twice (trials excluded
from analysis). The experiment was preceded by a 9-point calibration
procedure. Each trial began with a black central fixation dot and a
participant-triggered drift-check for the eye tracker (Fig. 10). After a
successful drift check (a measured deviation between dot position and
gaze of less than 1°) the fixation dot immediately turned green, but

remained visible for 800–1100ms more. Subsequently, a scene was
presented and participants moved their eyes around freely to explore it.
After 7 s, the scene was replaced by the fixation dot again, or by a re-
sponse screen asking whether the scene had been an exact repeat.
Participants were to respond by keypress; then, a red or green square
indicated for 1 s whether the given response was correct, before con-
tinuing to the next trial.

3.1.4. Artifact rejection
The same procedure of removing events and artefactual data was

applied to the scene viewing data. The number of fixations included
after exclusion of artefacts is generally higher than for the search task,

Fig. 7. Grand average FRP difference wave (target-distractor,
in red) and rFRP (grey) for target fixation, at electrode Pz.
Shaded areas indicate 95% percentile bootstrapped confidence
intervals (2000 resampling iterations). (For interpretation of
the references to colour in this figure legend, the reader is re-
ferred to the web version of this article).

Fig. 8. Top: grand average matched FRP difference wave for
second target fixation, likely confounded with overlapping
button press-related activity. Middle: grand average matched
FRP difference wave for first target fixation (Same as in Fig. 4).
Bottom: grand average rFRP for second target fixation, cor-
rected for overlapping button-press related activity. For better
comparability, waveforms were baselined by subtracting the
average activity between -150 and −50ms before fixation
onset.
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and specified in supplementary table 2.

3.1.5. Model definition
All the same predictors were modeled as for the scene viewing ex-

periment, with the exception of target fixations and button presses.
Only fixations occurring during scene presentation were included for
model fitting.

3.2. rFRP-FRP Comparison results and preliminary discussion

Overall, results are similar to the visual search task: Correlations
between matched FRP difference waves and corresponding rFRPs are
higher than between the rFRPs and the FRP difference waves for other
predictors (Fig. 11). Also similar to the visual search experiment, rFRPs
visually resemble matched FRP difference waves, but not one another
or any other difference waves (Fig. 12). Contrary to the search dataset,
the rFRP and the FRP difference wave for saccade amplitude are
strikingly similar and both resemble the rFRP obtained for saccade
amplitude in the visual search dataset. Possibly, a larger number of
included fixations yielded FRPs with a higher SNR. Fitting a linear
model also reveals a more defined influence of horizontal fixation po-
sition than in the visual search dataset. The difference could be ex-
plained by a higher number of included fixations, leading to a higher
SNR, in this case for both the rFRPs and the FRPs. Both FRP difference
wave and rFRP for the predictor cosine show lateralized influences not
visible in the search task results. We argue that these lateralized

occipital influences are due to differences in stimuli and will return to
them shortly.

3.2.1. Stimulus properties
There is one noticeable difference between EM confound estimates

from the two experiments that seems unlikely to be inherent to differ-
ences in subjects and eye movement characteristics. The scene viewing
rFRP for “saccade cosine” contains a distinct lateralized influence of
horizontal saccade direction on occipital EEG activity between 0 and
300ms after fixation onset, which is not visible in the search experi-
ment “saccade cosine” rFRP (Fig. 13, top and bottom panel respec-
tively). A similar effect can be seen for horizontal fixation position
(Fig. 12, 2nd row), but due to the noisy estimate for that predictor in the
search task, no comparison across tasks can be made.

To our knowledge, lateralized occipital effects of saccade direction
have not been shown before. Moreover, they only occur here in data
from more complex stimuli and show an occipital topography. We
therefore argue that the effects have characteristics of activity related to
visual input, rather than eye rotation only. Indeed, there were large
differences in visual input between both tasks. In the scene memor-
ization task, the naturalistic scenes formed one central area of varying
visual content on a monochrome background (see also Fig. 10), a si-
tuation carefully avoided in the search task. We speculate these later-
alized influences are related to where in the visual field the majority of
the scene falls as the eyes re-position horizontally. A similar lateralized
influence can be seen around 100ms in the rERP for horizontal fixation
position, which is directly correlated to the position of the scene in the
visual field. This shows that stimulus properties can be estimated from
ET-EEG data and that such properties possibly “distort” rFRPs of cor-
related predictors when not explicitly modelled. Although some EEG
variance due to stimulus properties is thereby accounted for, the model
could probably control for confounds better if it were extended to in-
clude stimulus properties. How to model relationships between stimuli
and neural responses should be the subject of carefully controlled ex-
periments.

3.2.2. Overall model performance
The cross-validation procedure yielded an average 6.9% of ex-

plained variance across participants. Again, the largest proportion of
variance was explained for electrodes over occipital regions (Fig. 14).
This percentage is somewhat lower than the 8.7% explained variance in
the search data. One explanation for this is that stimulus related var-
iance remained partially unexplained.

Fig. 9. Average proportion of explained variance as obtained from a cross-va-
lidation procedure, per electrode.

Fig. 10. Schematic depiction of a trial sequence in the scene memorization task.

T. Cornelissen et al. Journal of Neuroscience Methods 313 (2019) 77–94

88



4. General considerations in rERP model construction

4.1. Predictor inclusion

So far, comparing averaged FRPs to rFRPs has yielded several ob-
servations and conclusions.

Firstly, we have established in two different tasks and types of sti-
muli that a linear regression approach to ERP estimation yields sensible
rFRPs when applied to ET-EEG data. rFRP estimation can disentangle
influences of different eye movement related confounds from con-
tinuous EEG. Also, the effect of the experimental manipulation in the
search task could be established with higher accuracy and precision
using rERPs. Overlap correction provides several benefits of rFRPs over
FRPs. Researchers have more freedom in choosing experimental designs
(e.g. ones that require manual responses), and baselining can be done
without risking distortions. Given these findings, more intricate models
and considerations can be explored.

Above, we specified a model that both seems reasonable and allows
comparison of its output to FRPs. To this end, the model has been a
simplification. We do not claim it should form a standard. A definitive
list of predictors to be included is beyond the scope of this paper, but
recommendations and considerations can be discussed.

Firstly, any predictor included should be included based on the
reasonable assumption that it has an influence on the EEG. Adding
predictors only to exclude any kind of confound will increase the risk of
defining a model that closely explains the sampled data, but hardly
generalizes. Moreover, added predictors will inevitably be attributed
some variance. Adding a large number of variables without an indica-
tion for doing so therefore increases chances that some variation due to
an experimental manipulation is attributed to a needlessly included
predictor, subsequently increasing the risk of a false negative.
Conversely, predictor exclusion requires caution. Any unexplained
systematic variance in EEG could be attributed to another predictor that
correlates with the one excluded, increasing the risk of a false positive
(an example of an excluded predictor is given under “stimulus prop-
erties”). Therefore, it might be preferable to include slightly more
predictors known or assumed to have an influence rather than leaving
some out in fear of overfitting.

4.2. Collinearity

(Multi-)Collinearity means (substantial) correlation between pre-
dictors; when predictors are not perfectly correlated it is also known as
partial collinearity. For an extensive discussion of collinearity and

rERPs, see Smith (2011) and Sassenhagen (2018). Here we focus on ET-
EEG rFRPs. Collinearity results in unstable estimates or high β values
attributed to one predictor and low values to a collinear predictor. In
extreme cases this makes rERP estimates for collinear predictors unin-
terpretable. In free-viewing, most EM parameters are presumably par-
tially collinear. It is, for instance, reasonable to assume upward sac-
cades will tend to land higher on the screen (see the supplementary
materials for predictor correlation matrices for both experiments). Still,
fixation position and saccade direction are assumed to have distinct
influences on EEG activity and are thus modelled separately. This is
unlikely to be problematic for the data presented here for several rea-
sons: Firstly, the effects of collinearity on rERPs can be reduced or
overcome by including more data. Eye movements occur at a relatively
high frequency and provide many data points (i.e. fixations) in a short
recording. Still, in continuous-time regression there is no straightfor-
ward way to calculate exactly how much extra data is needed to counter
the effects of collinearity (Smith and Kutas, 2015b). Secondly, colli-
nearity only influences the rERPs of collinear predictors. Collinearity
does not affect the rERPs of uncorrelated predictors in the same model.
Thus, if collinear predictors are included only as covariates, then
nothing is lost to collinearity. When not perfectly correlated, each col-
linear predictor should be modeled because each will account for some
unique and potentially confounding variance. As for the influence of
collinearity on the rFRP for a predictor of interest (e.g. “target fixa-
tion”) the predictor of interest should be only weakly collinear with any
other modelled predictors. Note that the requirement for the in-
dependent variable to not correlate strongly with the experimental
manipulation holds for averaging approaches, too. Averaged wave-
forms, however, will become distorted by such correlations in a pos-
sibly more misleading manner, namely by displaying the influence of
the confound as an experimental effect. Note that relationship between
EM characteristics and neural activity is presented in the current work
as a confound to the relationship of interest. When studying the influ-
ence of different eye movement characteristics on EEG (Dandekar et al.,
2012b; Nikolaev et al., 2016), collinearity should be considered with an
increased amount of caution (and free-viewing might not be the ideal
paradigm).

4.3. Collinearity and overlap correction

Regression based overlap correction has been shown to be effective
for fixation-locked neural responses (Kristensen et al., 2017a, 2017b).
Theoretically, overlap correction should allow separate inspection of
saccade and fixation locked components. However, the way overlap is

Fig. 11. Mean correlation coefficients across participants, between each rFRP (horizontal axis) and the FRP for each predictor. Error bars indicate 99% percentile
bootstrap confidence intervals (2000 resampling iterations).

T. Cornelissen et al. Journal of Neuroscience Methods 313 (2019) 77–94

89



modeled within the rERP framework incurs a potential limitation. By
temporally expanding predictors, overlap correction becomes a matter
of disentangling partially collinear predictors (Smith and Kutas, 2015a,
2015b). Such collinearity imposes the same problems and restrictions as
described above and is not problematic if it does not concern a pre-
dictor of interest. Modelling separate intercepts for saccade- and fixa-
tion onsets is an example of modelling two temporally close predictors
with zero variation in value (both events get value 1 in the predictor

matrix) and relatively little variation in their relative position in time.
As expected, the resulting rERPs show clear distortions (Fig. 15). It is
impossible to interpret these rERPs in a meaningful way, showing that
temporal collinearity can hamper overlap correction in ET-EEG data.
There are two remedies for this kind of collinearity: As before, including
more data reduces distortions. Additionally, collinearity will be reduced
by variation in the amount of time between events and by variation in
the value of the predictor (Smith and Kutas, 2015b). Maximizing the

Fig. 12. Grand average rFRP (right column) and FRP (left column) waveforms per predictor.
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amount of data one gathers and maximizing predictor variance should
therefore be part of any ET-EEG design that one intends to analyze
using the method proposed here.

5. Discussion and possible model improvements

We have already highlighted that for experiments involving visually
complex stimuli, stimulus properties should probably be modelled
along with EM confounds. Below we describe a number of additional
considerations.

5.1. Multiple classes versus additional modifying predictors

A key assumption to the application of regression so far is that each
fixation evokes the same neural response and that this intercept is af-
fected as the EM related predictors vary in value. Is this assumption
always warranted? Short fixations provide an interesting example.

Saccades sometimes fall short of their goal, to be quickly followed
by a corrective saccade (Kingstone and Klein, 1993; Kapoula and
Robinson, 1986). This invites the question whether short fixations serve
the same purpose as longer ones and whether they evoke the same
neural responses. Similarly, in the eye tracking literature there is a
tendency to exclude fixations with a shorter duration than a certain cut-
off from outcome measures (like total gaze duration). Sometimes that
cut-off can be as high as 100ms (Holmqvist et al., 2011). For rERPs, we
have implied no minimum fixation duration. Still, we assumed that
short fixations do not lead to target recognition (only fixations longer
than 100ms were labeled as fixation on a target element). We do not
aim to settle any debate on the functional role of short fixations within
this paper. But given sufficient reason to assume “short” fixations
functionally differ from longer ones, they should be modeled as an
additional class (intercept) rather than modeling all fixations with an
equal intercept.2 In a similar manner, we assume stimulus onsets evoke

Fig. 13. Grand Average rFRP estimates, visualizing influence of horizontal saccade direction on fixation related EEG. Top panel: scene viewing data. Bottom panel:
the same rFRP, derived from the visual search data.

Fig. 14. Average proportion of explained variance per electrode as obtained by
a cross-validation procedure.

2 When neurophysiological data are time-locked to eye movements, classifi-
cation of different EMs in the ET data becomes even more important than in
gaze duration studies, especially for comparability between studies. The built-in
eyelink detection algorithm used here only classifies saccades, fixations, and
blinks. Other algorithms also classify post-saccadic movements of the pupil
(Nyström and Holmqvist, 2010; Nyström et al., 2013), which have been ob-
served to last up to 30ms and vary with saccade characteristics and with ac-
commodation (Hooge et al., 2015; Nyström et al., 2015). Regardless whether
these kinds of eye movements are considered perceptually relevant or eye
tracker induced artefact, the employed classification algorithm clearly has a
direct influence on the timing of saccade- and fixation onsets. ET-EEG
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the same neural response for every onset. Perhaps for complex scenes
this is an over-simplification that ignores large differences in stimulus
properties. These are assumptions that deserve close consideration
during model construction.

5.2. The assumption of linearity

Finally, one might question the linearity of the relationships be-
tween predictors and the EEG. It is impossible that any continuous
predictor-EEG relationship is strictly linear. Still, we may assume the
relationship approaches linearity closely enough within a certain range
of predictor values. Assuming such, and refraining from predictions
about predictor values outside the ones measured, non-linearity is not a
problem for applying linear regression. For instance, the relationship
between spike potential amplitude and saccade size is linear up to
roughly 10° (Boylan and Doig, 1989). Within the current experiment
stimuli spanned a relatively small area of the screen and saccades> 10°
were rare. As such, the assumption of linearity is a very valid one. Some
relationships, however, may be non-linear even within the measured
predictor range, requiring a model with non-linear relationships to
obtain more realistic rERP estimates. Allowing non-linearity does not
mean no definition of the shape of the relationship is necessary. The-
oretically one could define a model with very lenient assumptions about
the shape of any predictor-EEG relationship, and let the shape be de-
termined by the data in the fitting process. However, such flexibility
requires large amounts of data to prevent over-fitting; otherwise, over-
fitting would result in low within-sample error, but high out of sample
error (e.g. a very low cross-validated R2). In general, the increased
complexity introduced by fitting any kind of nonlinearity requires an
informed choice of parameters. What relations to model as non-linear
and what assumptions to make about their shape should therefore, in
our opinion, be informed by future research rather than by making non-
linear fits the standard. Much in the same way as collinearity, mild
overfitting and difficult to interpret rERPs might be less problematic if
the nonlinearity is modeled for predictors that serve as controls only.
The exploration of ways to model nonlinear relations between eye
movements and EEG might be a fruitful and necessary next step in the
application of rERPs to ET-EEG data.

A method that could deal with non-linearity and the risk of over-
fitting in its own way is the use of Generalized Additive Mixed-effects
Models/GAMMs (e.g. Wood, 2017). However, one challenge for non-
linear model fitting is computational load. At the time of writing, any
model beyond the least-squares fit involves a great drop in computa-
tional efficiency. This is exacerbated by the fact that the same model
will be estimated for multiple channels. While this can be done very
efficiently in the linear least-squares case (because the computationally
demanding inversion or factorization of the gram matrix has to be
solved only once), it probably makes many more complex choices for
coefficient estimation - e.g., GAMMs - computationally infeasible.

Conversely, this peculiarity of the least-squares procedure also im-
plies even complex rERP designs can be estimated quickly with opti-
mized least-squares solver algorithms. The same applies to any trans-
formation of the design matrix or the data which still allows the usage
of Ordinary Least Squares; for example, the technique can be employed
in the time-frequency domain, obtained coefficient time series/rERPs
can be source localized in the same manner as ERPs, and to model
nonlinearities polynomial terms can be added just as we have added
sine and cosine transforms.

6. Limitations and future directions

As a limitation, single trial data are not available in continuous time
regression. This is inherent to the method. Additionally, regression
might be less suited for paradigms that yield fewer fixations for ana-
lysis. Both simulations (Smith and Kutas, 2015b) and observations
within our own lab, indicate that having fewer than 200–300 events
(fixations) severely hampers overlap correction. Furthermore, addi-
tional studies will have to reveal to what extent a design can limit
participants’ freedom to move their eyes, and thereby the variance and
range of predictor values, before it becomes problematic to regression
analysis. Here, we have focused on free-viewing behavior because
studying it challenges the use of averaged FRPs.

We see particular opportunities for regression-based methods in
richly described stimulus sets such as corpus data in reading (e.g. Kliegl
et al., 2004). Such stimulus sets can contain large variance, but also a
description of said variance for each fixation. Moreover, there are
manifold descriptions of each word along several different dimensions.
Such a rich description effectively renders every fixation a potential
data-point for evaluation of experimental effects (as opposed to a single
target fixation, or a single manipulated object per scene). Regression

Fig. 15. Top panel: Grand Average rERP for the intercept term of fixation onset. Both fixation locked and saccade locked predictors are included in the model used for
estimation. Bottom panel: Grand Average rERP for the intercept term of saccade onset, as estimated by the same model.

(footnote continued)
researchers should be aware of this.
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can then serve to answer questions about the separate influences of
different variables on an outcome measure. As such, it eliminates the
need for binning. Although available for reading research, such datasets
are lacking for other fields, such as scene perception; a large body of
scene photographs with a full physical and semantic description is not
available. Still, modelling approaches of a similar nature have already
been applied to eye movements, for instance to study the effects of
physical stimulus properties on fixation duration or fixation location in
complex scenes (Einhäuser and Nuthmann, 2016; Nuthmann, 2017).
With the rERP framework and the development of suitable stimulus sets
we believe them to be applicable to ET-EEG free-viewing experiments,
too.

7. Summary and conclusions

This paper has focused on the analysis of ET-EEG data from free-
viewing experiments. Linear estimation is specifically suited for these
kinds of data because control over subjects’ eye movement behavior is
inherently minimal. Such lack of control makes it implausible to con-
struct bins contrasting data from two or more conditions along a single
dimension. Adding confounding variables into a regression model as
done here is a theoretically sound alternative to binning.

In summary, this paper has provided an introduction to the appli-
cation of linear least squares regression to fixation related potentials.
We have demonstrated that linear estimates of possible confounds in a
free-viewing task are sensible. Critically, and as an advantage over
averaging, any variance attributed to the confound in linear regression
cannot be attributed to an experimental manipulation. Relatedly, we
have shown that experimental effects can be estimated with higher
accuracy and precision. We have also given multiple examples of how
overlap correction is beneficial and critical for analyzing ET-EEG data.
As a consequence, baselining can be applied without risking distortions
and researchers have more freedom in choosing experimental designs,
such as ones that require manual responses shortly after critical fixa-
tions. We have obtained similar results from a task with a highly-con-
trolled stimulus (the visual search task) and a task with a highly vari-
able stimulus (scene memorization). In both cases rFRPs for confound
control are similar to FRP visualizations created for comparison. Visual
comparison across experiments suggests that physical stimulus prop-
erties can manifest in rFRPs for other predictors when not explicitly
modelled. We propose that extra research is needed to better under-
stand the relations between free-viewing EEG and stimulus properties,
especially for complex stimuli.

To indicate limitations, we have shown an example of how colli-
nearity caused by temporal adjacency can hamper overlap correction.
Lastly, we have discussed non-linearity. Most predictor/EEG-relation-
ships in free-viewing may well be non-linear. For some we assume
linearity over a certain range of predictor values. For predictors and
ranges that violate the assumption of linearity, non-linear relationships
can be fit within a linear regression model. Even less restrictive pre-
dictor-EEG relationships should be defined in a thoughtful manner, and
could be a basis for future investigations.

In conclusion: for estimating fixation related EEG in a free-viewing
task, rFRPs are favorable over averaged FRPs.
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