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1  |   INTRODUCTION

Advances in cognitive neuroscience rely on powerful non-
invasive methods to corroborate and extend behavioral find-
ings. Magnetoencephalographic or EEG (hereafter referred to 
as MEEG) experiments typically result in high‐dimensional 
outcomes with a spatiotemporal structure: hundreds of time 
points are sampled at multiple sensors. A popular approach to 
analyzing ERPs is to submit activity averaged over multiple 
time points and sensors to parametric tests of significance 
(e.g., analysis of variance or t tests). However, the electrodes 
and time points to average over cannot be selected contingent 
on having seen the data (unless, e.g., proper cross‐validation 
is employed; Kilner, 2013), as this completely invalidates 
the resulting p values. Specific analysis parameters can be 
set a priori (e.g., in the form of a preregistration; Chambers, 
2012), but if this was not possible (e.g., because a novel 
phenomenon is investigated), a more explorative approach 
is required. One solution is to conduct massively univariate 

tests (Groppe, Urbach, & Kutas, 2011); that is, conduct the 
same test as above at every time point and sensor. However, 
this results in an outcome as high dimensional as the original 
data, leading to a multiple comparison problem. When hun-
dreds or thousands of individual tests with the usual signif-
icance thresholds (e.g., p < 0.05) are conducted, the actual 
error rate greatly exceeds the nominal rate (5%). Correction 
for multiple contrasts must be applied (Groppe et al., 2011); 
but while these can provide nominal error rate controls, many 
of these methods reduce power and cripple the chances of 
the researcher to observe a true effect given that it is there 
(Button et al., 2013).

Cluster‐based permutation tests are an approach to ad-
dress this problem, providing both high Type II (power) and 
nominal Type I (false positive) error rates. For this reason, 
they have become highly popular, with over 2,000 citations of 
the seminal paper by Maris and Oostenveld (2007) on Google 
Scholar. Their effectiveness in controlling Type I error rate has 
been convincingly established (e.g., Pernet, Latinus, Nichols, 
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& Rousselet, 2015). The cluster‐based permutation approach 
(introduced into neuroimaging by Bullmore et al., 1996) 
considers the specific structure of MEEG data to maximize 
power. It builds on the assumption that effects are clustered 
along the dimensions of interests: (a) time, and (b) space. On 
one hand, it assumes that a true signal has a temporal exten-
sion reflected at multiple adjacent time points, and, on the 
other hand, adjacent sensors show similar patterns. Spatial 
clustering at the sensor level is motivated by the fact that 
the sensor level signals are the result of volume‐conducted, 
source‐level currents (i.e., one cortical source projects to all 
of the surface‐based sensors), which leads to correlated activ-
ity of adjacent sensors. Thus, MEEG data—and presumably 
true MEEG effects (i.e., MEEG events reflecting neurocogni-
tive events)—show a characteristic correlation structure.

Importantly, the cluster‐based permutation approach sug-
gested by Maris and Oostenveld (2007) realizes its control of 
the multiple comparison problem while maximizing power 
by employing the cluster structure of the data as its sole test 
statistic. That means that no inference is made over individual 
voxels (i.e., one specific time point at one specific sensor). 
Instead, first, clusters are identified in the data via an algo-
rithm (see below), and second, the cluster structure of the 
observed data is compared to the pattern of cluster sizes from 
data constructed under the null hypothesis. Conceptually, this 
means that individual voxels are never visible to the second 
statistical inference stage, and no statistical inference is made 
about individual points. Thus, no statements about the onset 
or offset of a significant difference with millisecond preci-
sion will be accurate. Furthermore, the spatial location of the 
cluster is similarly invisible at this stage, meaning that it is 
not the location (e.g., temporal and spatial extent) of the clus-
ter to which, for example, resulting p values refer, but only 
their size.

Nevertheless, researchers consistently employ cluster‐
based permutation test results to support claims not only 
about the existence of a significant difference, but also about 
the (spatial or temporal) extent or location of effects. This 
procedure, while common, is inapplicable. Cluster‐based 
permutation tests as discussed by Maris and Oostenveld 
(2007) do not provide statistical inference for the location 
of effects. In the following, we discuss the nature of cluster‐
based permutation tests in more detail in order to show why 
this inference is not justified, and then present what inference 
is justified, as well as how inference about timing or spatial 
extent of effects can be made.

The relevance of elaborating on these issues stems from 
the high prevalence of the method. It is integrated in the 
major MEEG analysis suites (e.g., Delorme & Makeig, 2004; 
Gramfort et al., 2013; Oostenveld, Fries, Maris, & Schoffelen, 
2011) and has become standard practice in MEEG analysis. 
Misuses of the method are ubiquitous in the literature; while 
we will abstain from identifying individual “offenders,” the 

authors themselves must admit to having inappropriately 
utilized the method in the way here described, and further 
examples can be abundantly found in the published literature.

1.1  |  How cluster‐based permutation 
tests work
Cluster‐based permutation tests have two components. One 
is the cluster‐forming algorithm, which converts one high‐
dimensional observation into a quantifiable summary regard-
ing its cluster structure. The other creates a surrogate null 
distribution, against which the observed data is compared to 
obtain p values. In the following, we present only a concep-
tual overview; for a more formal treatment, see Maris and 
Oostenveld (2007).

1.2  |  Cluster formation stage
In the following, we refer to the case where the data (i.e., 
each observation) has the shape (Space × Time), although 
essentially the same considerations apply to one‐dimensional 
data (e.g., only time), or 3D data (e.g., Frequency × Space 
× Time). For simplicity, we consider the case of inference 
regarding a binary condition contrast (i.e., the contrast be-
tween the ERP in two conditions) across subjects. The same 
concerns apply for more complex designs, with multiple 
levels and with reference to a null hypothesis of exchange-
ability of all levels of a factor. In the two‐condition case, at 
each coordinate, a first‐order test statistic is calculated (i.e., 
a t test is conducted, contrasting the values at this time point, 
for each subject, of Condition 1 versus Condition 2). The H0 
of this test is that, in an unobserved population of subjects, 
exposed to the same experimental manipulation, the differ-
ence between the two conditions would equal precisely 0. 
Repeating this procedure for the entire data set results in a 
(Sensor × Time) t score map. Comparing these t values to the 
t distribution yields p values, but, of course, due to the num-
ber of scores, many are expected to exceed a critical value 
(resulting in, e.g., p < 0.05) even if the true effect is zero 
everywhere (i.e., the multiple comparison problem). In prin-
ciple, a range of approaches is available to account for this 
(discussed by, e.g., Groppe et al., 2011; Maris & Oostenveld, 
2007), but in the case of cluster‐based permutation tests, clus-
ters in the data are identified and utilized. For this, voxels are 
thresholded according to an a priori defined criterion (e.g., 
t = 1.96), and adjacent voxels with t scores exceeding this 
value are grouped together. Temporal adjacency is trivially 
defined, but spacial adjacency for MEEG sensors requires a 
priori established neighborhood definitions. Finally, groups 
are summarized into a single number by, for example, taking 
the sum of the t values—yielding the cluster size(s).

Critically, the extent of the cluster(s) in the data—where 
in time they start, their topography, and if applicable their 
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frequency boundaries—is entirely fixed at this stage and is 
a purely descriptive function of the data at hand. Moreover, 
it depends strongly on the specific cluster‐forming algorithm 
employed and the chosen parameters (e.g., What is the first‐
stage test statistics—t scores? Raised to the first or second 
power? A threshold corresponding to p < 0.05 or p < 0.01? 
Is the cluster sum or the count of the included values consid-
ered? How many voxels must a voxel be adjacent to in order 
to count for the same cluster?) and on preprocessing choices 
(filter settings? spatial neighborhood templates?).

1.3  |  Inference stage
The cluster formation stage described in the previous section 
often contains a nominally inferential stage—thresholding 
voxels by, for example, if their t scores exceed a certain value. 
However, the results of this procedure are not interpreted as 
inferential claims because they fall prey to repeated tests. 
Instead, a second‐order inference stage is employed. The null 
hypothesis of this stage is that the cluster structure of the data 
identified in the first stage is exchangeable between condi-
tions (i.e., clusters simply reflect the inherent correlation of 
MEG data in time, space, and frequency). The cluster test 
statistic is a complex, nonlinear function of the data at hand. 
Different from, for example, the mean, whose distribution is 
often well understood, it is not a priori clear what distribu-
tion would result if we were to repeatedly take samples from 
data where the null is true, establish cluster sizes as in the 
first stage, and consider their distribution. Thus, an analytic 
approximation of the null distribution is currently not practi-
cally feasible for MEEG data. Instead, the probability of the 
data under a null hypothesis of exchangeability can be estab-
lished with permutation tests.

Note the specific form of the null hypothesis: samples are 
exchangeable with regard to the manipulation. Simplified, it 
makes no difference if we consider data from Condition 1 
or Condition 2, they were drawn from the same probability 
distribution (with regard to the cluster‐forming procedure). 
The data at hand are used to simulate a null hypothesis of 
exchangeability. A permutation test simply realizes this null 
hypothesis by enumerating all possible assignments of data 
points to the conditions. Full permutation tests are usually 
computationally intractable; however, a special class of ap-
proximations—Monte‐Carlo sampling—are, and they yield 
satisfactory results if > 800 (Pernet et al., 2015) permutations 
are conducted. That is, for each iteration, assignment to con-
ditions is randomized for each data set—that is, for the data 
from Condition 1 and Condition 2 of Subject 1, it is randomly 
chosen if Condition 1 is subtracted from 2 or the reverse, 
and so on. Then, within this iteration, the first stage process 
is repeated to establish its cluster structure, and the value 
stored. Subsequently, a new iteration is conducted and so on, 
until a large number of samples under the null hypothesis of 

exchangeability has been obtained. If, for example, the sum 
of the largest cluster is taken for each iteration, the result is 
one value for each.

Finally, the empirical cumulative density function of these 
surrogate‐null values is computed as an approximation of the 
distribution of the test statistic under the null (paralleling the 
well‐known normal and t distributions for the distribution of 
a much simpler test statistic in the case of simply considering, 
e.g., means). The percentage of surrogate‐null values that the 
actual observed data exceed corresponds to the p value under 
the null of exchangeability.

Importantly, while the original data is high dimensional 
and thus prone to multiple comparison issues, the first stage 
reduces it to a single number, and it is this number whose 
probability under the null is established.

1.4  |  What to do and not to do with cluster‐
based permutation test results once you 
have them
Note that, in our description of the procedure, the extent and 
dimensions of the cluster(s) were fixed at the first stage. The 
inferential second stage does not ever “see” first stage coor-
dinates, only the cluster size(s).

In practice, this means that there is no guarantee of 
the false‐positive rate on any of the points included in the 
cluster. That is, statistical claims regarding differences 
between the two conditions are not justified for any of 
the points included. Thus, there is no statistical certainty 
or confidence regarding claims about a difference at, for  
example, the earliest time point in a cluster. However, such 
claims are routinely made in the literature, taking a form 
such as (following is a quote from a recently published 
article, changed to prevent identification): “A cluster‐based 
permutation test was conducted to identify the time point at 
which the conditions differ.”

Such a claim is not justified due to a multitude of reasons.
First, the test did not evaluate if the inclusion of an earlier 

time point in the cluster, or the omission of the earliest time 
point, would not also have resulted in a significant result. The 
cluster extent was not established by the inferential stage (i.e., 
by the permutation and inference stage). The cluster extent 
depends on the sample at hand as it is a descriptive statistic, 
and on the specific workings and parameter settings of the 
cluster‐forming algorithm. Importantly, this does not mean 
it is inherently wrong to report cluster extents. It is perfectly 
appropriate to describe that, in the observed data, the cluster‐
forming algorithm established a cluster of a certain extent. It 
is simply that the specific shape of this cluster—its spatial, 
temporal, frequency … extent—has not been the subject of 
an inferential test with guaranteed error rates; only that its 
size occurs in the outmost tails of the surrogate null data (i.e., 
that it is improbable under the specific null).
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Second, the preinference thresholding of individual data 
points reflects the power of the test. That is, with more trials 
or less noise, earlier points will pass the threshold at this stage 
(and sensors at the borders of topographical pattern will turn 
out significant). Lower measurement noise or larger samples 
shift observed effects forward in time/shrink topographical 
patterns/make effects appear over a narrower frequency range. 
Inversely, high noise/small samples shift effects backward in 
time/widen the spatial extent/make effects show up in wider 
frequency bands. For the temporal dimension, extent also 
strongly depends on filter settings (Tanner, Morgan‐Short, 
& Luck, 2015); for the frequency domain, on, for example, 
wavelet cycles.

Finally, cluster‐based methods can underestimate the 
latency, spatial, or frequency extent of effects because the 
power of the whole cluster may carry forward points at its mar-
gins through the inference stage. As introduced by Groppe et 
al. (2011, p. 1718), this in fact is more likely for the earliest and 
latest time points (and for the lowest and highest frequencies), 
as the cluster margin points gain power from the cluster peaks. 
Often, at the first stage, points are thresholded on p value cut-
offs (e.g., only points where p < 0.05 or |t| > 1.96 are included). 
However, these p values are not corrected for multiple tests, 
and in fact many false positives are expected. Thus, in many 
contexts, significantly large clusters will include points where 
the null hypothesis is true (see, e.g., the simulation below), and 
there is no control (e.g., a 5% level) on the rates of such errors. 
This is why cluster‐based permutation tests are not equipped 
to provide precise estimation of spatial distributions, temporal 
onsets, or frequency bands. The locations (latencies, topogra-
phies …) of clusters identified by cluster‐based permutation 
tests will be strongly correlated with the true extent of effects, 
but there is no error rate control on these locations, as would 
be expected for scientific estimation.

For specific recommendations on how to test for MEG 
effect latencies, we recommend the works of Kiesel, Miller, 
Jolicœur, and Brisson (2008), Luck (2005), Miller, Ulrich, 
and Schwarz (2009), Piai, Dahlslätt, and Maris (2015), and 
Rousselet (2012). These methods include, for example, jack-
knife estimates of fractional area latency or (properly cali-
brated) counting of successive positive tests. For contrasting 
spatial patterns, we refer to, for example, King and Dehaene 
(2014), Tian and Huber (2008), and Urbach and Kutas (2002).

1.5  |  Cluster‐based permutation tests for 
post hoc comparisons
Having observed a significant cluster, researchers (perhaps, 
in particular, researchers who are in principle aware of these 
issues) sometimes may feel inclined to instead use cluster‐
based tests to establish effect masks, that is, to conduct follow‐
up analyses, such as investigate the time course of an effect at 
those sensors identified as showing significant effects by the 

test and correlating cluster strength with a variable of inter-
est. Here, two important caveats must be considered. First, as 
the test thresholds points by effect strength, it brings the dan-
ger of circular analysis (Vul, Harris, Winkielman, & Pashler, 
2009). If a cluster‐based permutation test indicating a differ-
ence between subjects scoring high versus low on a test is 
followed up by a correlation of subject score on cluster activ-
ity, this is circular. To conduct such an analysis, independ-
ence must be established via, for example, cross‐validation.

Second, while using cluster extents as masks can be jus-
tified if the masks stem from an independent data set, the 
cluster‐based test (i.e., the inference stage) may not do any 
meaningful work. Remember again that the extent of the 
cluster (i.e., the shape of the mask) is established at the first 
stage. Thus, the costly calculation of the surrogate null data 
is not inherently useful.

1.6  |  How to report cluster‐test results
As noted, reports of inapplicable usage of cluster‐based 
permutation tests in the literature are abundant. Such mis-
uses can hardly be blamed on the original presenters of the 
method. Maris and Oostenveld (2007, p. 187) make this point 
explicitly:

There is a conflict between this interest in 
localized effects and our choice for a global null 
hypothesis: by controlling the FA [false alarm] 
rate under this global null hypothesis, one can-
not quantify the uncertainty in the spatiotempo-
ral localization of the effect.

It is also stated emphatically on the Fieldtrip website: “Here 
is what NOT to write: ‘We found a significant cluster in area X, 
between time point A and B.’”

Further, Groppe et al. (2011, p. 1718) write:

It is important to note that because p values are 
derived from cluster level statistics, the p value 
of a cluster may not be representative of any sin-
gle member of that cluster. For example, if the 
p value for a cluster is 5%, one cannot be 95% 
certain that any single member of that cluster is 
itself significant […]. One is only 95% certain 
that there is some effect in the data. Technically, 
this means that cluster‐based tests provide only 
weak [family‐wise error rate] control …

It is discussed in detail by Maris (2011, p. 8):

Part of the appeal of cluster‐based permutation 
tests comes from the fact that they localize ef-
fects in space, frequency, and time. This feature 
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should not be overvalued. In fact, cluster‐based 
permutation tests do not control the false alarm 
rate at the level of the (channel, frequency, 
time)‐triplets, the (channel, frequency)‐pairs, 
or any other pairs or singletons. Therefore, they 
do not allow probabilistic statements about 
effects at the level of these triplets, pairs, and 
singletons. For instance, on the basis of a clus-
ter‐based permutation test, one cannot say that 
the probability of including a particular (chan-
nel, frequency)‐pair in a significant cluster is 
controlled at the nominal alpha level under the 
null hypothesis of no effect at that particular 
pair regardless of any effects at the other pairs. 
Such a null hypothesis will be called a specific 
null hypothesis: equality of the probability dis-
tributions in the two conditions at a particular 
(channel, frequency, time) triplet (or any other 
pair or singleton), while there may be inequal-
ity at all other triplets (pairs or singletons). This 
specific null‐hypothesis must be contrasted with 
the nonspecific null hypothesis that is tested in 
a permutation‐based test: equality of the prob-
ability distributions of the complete multivari-
ate data sets in the two conditions. Thus, in a 
permutation‐based test, one controls the false 
alarm rate under this nonspecific null hypothe-
sis, and not under a null hypothesis that is spe-
cific for a particular triplet, pair, or singleton in 
the hyperspace.

And it is also noted by Piai et al. (2015):

[The] false alarm rate [for effect, e.g., latencies] 
is not controlled […] by cluster‐based permuta-
tion tests (Maris & Oostenveld, 2007). In fact, 
these approaches only control the false‐alarm 
rate under the omnibus null hypothesis involv-
ing no effect for none of the time points.

To summarize, it is not wrong to speak of a cluster being 
significant per se, if what is meant by this is to say that the 
null hypothesis is false with respect to the cluster structure of 
the data and that some specific cluster(s) exceed a critical value 
(see, e.g., Maris & Oostenveld, 2007, p. 187, sections 4.4.3 and 
4.5). After all, each cluster is associated with a proper permu-
tation‐based p value corresponding to its position in the surro-
gate‐null histogram. That is, the cluster(s) can be “significant” 
with respect to their size, as this is what the inference stage is 
concerned with. They are not significant with respect to their 
extent, which was established entirely at the first stage. Thus, 
when p < 0.05 after a cluster‐based permutation test, while 
the existence of the cluster is significant, its precise shape is 

not—or: the significance of the cluster refers only to the loca-
tion of its cluster‐level statistic in the distribution of such statis-
tics, not to its location in space, time, or frequency.

The cluster extent may still be an informative description 
of the data—much as, for example, its standard deviation—
but it is not an inferential claim. Thus, it should not be re-
ported as such: “A nonparametric cluster‐based permutation 
analysis assessed the moment in time where conditions dif-
fered, which was 180 ms.”

It could, however, be justified to say: “A nonparametric 
cluster‐based permutation analysis indicated an effect of 
condition (p < 0.05). This corresponded to a cluster in the 
observed data beginning at 180 ms.”

This statement is justified; however, it might not be con-
sidered best practice. The categorical distinction between 
the first and second sentence—one is inferential, the other 
descriptive—is very easily glossed over. The inferential read-
ing is, in turn, very seductive. We think the abundance of 
misuses in the literature demonstrate this. Perhaps it is pref-
erable to either prefer vague statements (e.g., “correspond-
ing to a cluster beginning around 150–200 ms”), so as to not 
imply statistical precision where none is given or to inverse 
the order, so as to indicate the categorical difference between 
inferential and descriptive claims (e.g., “A cluster in the ob-
served data extended from 180 to 250 ms. The cluster‐based 
permutation test indicated that there was a significant effect 
of condition”).

The same goes for spatial and frequency extents. Cluster 
tests do not statistically justify the claim that the effect 
occurs between X and Y Hz. While it can be correct to say, 
“A cluster in the observed data was found in the theta band. 
Cluster‐based permutation testing indicated this cluster to be 
significant,” it would not be appropriate to understand this 
to mean it was statistically established (in the sense of false‐
positive control) that the effect occurs only, or primarily, in 
the theta band.

1.7  |  How bad can things be? A simulation
We claim above that it would be grossly misleading to assume 
that cluster‐based permutation tests, which imply statistical 
guarantees on error rates, can be meaningfully employed to 
estimate the extent of an effect with statistical certainty. For 
demonstration purposes, we conduct a simulation study to 
exemplify realistic real‐world failure rates.

Consider a researcher who wishes to estimate how early 
an effect appears and wishes to use a cluster‐based permuta-
tion test for this purpose. We have found multiple counts in 
the literature where researchers have indeed done this—for 
example, conducting the test and assuming that the earliest 
time point included in any cluster significant at some alpha 
level is a reliable indication of the true onset of the effect. 
Again, note that this time point does not result from the “test” 
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part of the cluster‐based permutation test, as cluster extents 
are established during the preinferential cluster formation 
stage; thus, it can be assumed that the test is performed par-
tially to provide statistical guarantees on the effect.

While the precise bias of this procedure is hard to es-
timate and highly context dependent, there are multiple 
factors at play establishing such a bias. As noted above, 
time points at the core of a cluster carry forward points at 
the margins—that is, those supporting claims about effect 
onsets—through the inference stage. This is how underes-
timations of latencies can come into existence—for exam-
ple, the (temporal) extent of the cluster is overestimated. 
On the other hand, the cluster‐formation stage does not 
benefit from the sensitivity‐enhancing clustering itself 
(although see Mensen & Khatami, 2013, for an alterna-
tive algorithm). That means that it can also in a sense be 
conservative if employed for selecting points at the mar-
gin: if the power of a study is low, the probability of de-
tecting points at the margins will be low. Thus, while the 
existence of any effect at all is detected with high power, 
points at the margin will only be included in a fraction 
of cases. Their inclusion will depend on various factors, 
in particular, cluster‐forming thresholds and how broadly 
distributed versus how focal the effect is. Of course, ef-
fects have spatial extent, too, so there will be multiple 
sensors at which the preselection test at this stage can suc-
ceed. However, (a) this, of course, means false positives 
become likely, and (b) as tests across multiple sensors 
are not independent (due to volume conduction and spa-
tial correlation), a true increase in sensitivity is hard to 
estimate. Either way, the following inference stage (i.e., 
construction of the surrogate null and comparing observed 
clusters with the resulting critical value) does not provide 
any guarantees of nominal Type I error rates (i.e., upper 
bounds for false positives) for a claim about cluster extent. 
Thus, while it provides Type I controls on reporting any 
significant differences at all, it does not provide Type I 
controls on claims such as “the effect onset is as early as 
X ms.” As our simulation below shows, Type I error rates 
can far exceed nominal alpha levels.

2  |   METHOD

Note that an OSF (Open Science Framework) repository con-
taining the exact code required to replicate this simulation 
is provided at https://osf.io/5cw7n/. The EEGLAB exam-
ple data set (Delorme & Makeig, 2004), a 32‐channel con-
tinuous recording, was processed in MNE‐Python (Gramfort  
et al., 2013). Continuous activity was cleaned of eye move-
ment artifacts with independent component analysis (Jung  
et al., 2000), downsampled to 100 Hz, and low‐pass filtered 
at 30 Hz.

Across 10,000 simulation runs, on each run, 700‐ms seg-
ments at random time points were extracted as epochs. The 
prestimulus period mean was subtracted as a baseline and then 
dropped, leaving 500‐ms long epochs. On each run, 100 such 
nonoverlapping epochs were created. Then, to one half of these 
epochs, a simulated monophasic “ERP” effect was added. For 
this, a normal distribution probability density function, evalu-
ated from −1.5 to 1.5 over 21 data points (210 ms) and scaled 
to range from 0 to 15 uV, was added to each data segment, 
beginning at 150 ms (so that the first sample to exceed zero—
and thus the ground truth effect onset—was at 160 ms). A to-
pography of the effect was simulated by multiplying it with 
the topography of the first independent component of neural 
origin (resulting in a frontocentral topography). The result 
of this was an ERP‐like perturbation embedded in real EEG 
background noise on every trial, beginning at 160 ms.

Then, a cluster‐based permutation test, as implemented in 
MNE‐Python, was conducted with the null hypothesis that the 
epochs to which the ERP was added are exchangeable with 
the ones where it was not added. That is, we implemented a 
test just as those realistically employed to establish the gen-
eralizability of differences between conditions. Spatial adja-
cency was computed via Delaunay triangulation. A one‐tailed 
F test was conducted, and initial cluster forming thresholded 
at a value corresponding to p < 0.05 (uncorrected).

As noted, this procedure was repeated 10,000 times. On 
simulation runs with a positive result, the earliest time point 
in any of the significant clusters was extracted. The differ-
ence between the actual effect onset and this number was 
noted, and its distribution plotted over all runs, as well as the 
degree of underestimation of effect onset latency.

3  |   RESULTS

As shown in Figure 1, in general, the test tended to overesti-
mate the latency of the effect. Underestimations of 40 ms and 
longer occurred in many more than 5% of runs (see Figure 1, 
right). Specifically, on >20% of runs, the effect onset was es-
timated too early; divergences of 40 ms or more were found 
at >10% of runs.

4  |   DISCUSSION

These findings show that cluster‐based permutation tests 
hardly provide statistical guarantees for claims such as 
“the manipulation induced an ERP no later than X ms.” 
Divergences can be large and occur in many more cases than 
the nominal error rate of the test. This is not unexpected, as 
the test’s guarantee of error rates concerns the reporting of a 
significant cluster when the null hypothesis of exchangeabil-
ity is true, not the extent of the cluster.

https://osf.io/5cw7n/
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4.1  |  Limitations
The precise outcomes of this simulation are very dependent 
on various choices. As noted, the specific cluster‐forming 
algorithm, filtering, and signal‐to‐noise level greatly influ-
ence the precision of the procedure. For example, raising 
the cluster‐forming threshold and (most) low‐pass filter-
ing will increase estimated onset latencies; increasing the 
signal‐to‐noise ratio will improve the accuracy of misusing 
cluster‐based permutation tests for estimating effect onsets. 
(Trivially: consider the case where the null hypothesis is 
false and the noise level approaches zero—i.e., approaching 
an effect size of 1. Now, the test approaches 100% power 
and alpha can be lowered arbitrarily. That is, during cluster 
formation, almost all selected points will be true positives, 
and almost all deselected points will be true negatives. At 
the second stage, in the limit, the only observed clusters will 
be the true effect; that is, as effect size approaches infinite, 
the empirical cluster approaches the true effect and the em-
pirical cluster increasingly is the only cluster ever observed.) 
However, note that this is very different from normal error 
rate control. A t‐test—or any other proper hypothesis test, 
such as cluster‐based permutation tests—guarantees that the 
null hypothesis it actually tests is only reported to be false, 
given that it is true, at nominal levels (i.e., in 5% of cases). 
This is true by the test’s construction and will be completely 
unaffected by, for example, noise levels; even if the signal‐
to‐noise ratio is extremely poor, while the test’s power will 
be low, its false‐positive ratio will be nominal. Nonetheless, 
the specific outcomes of this simulation are dependent on 
various ad hoc parameter choices.

It cannot be stressed enough that this finding does not reveal 
an error in the cluster‐based permutation test procedure. The 
procedure is doing exactly what it was designed, and prom-
ised, to do: control false‐positive rates for the null hypothesis 

of exchangeability with regard to the cluster structure of the 
data, while maximizing sensitivity. It is only the shortcomings 
of a misuse of this procedure that are highlighted here.

4.2  |  Conclusion
The strength of cluster‐based permutation procedures in 
handling the multiple comparisons problem unfortunately 
can lead researchers on the slippery slope of misinterpre-
tation. Common and problematic misuses are reporting the 
onset or offset of conditional differences on a millisecond 
scale or precise spatial extent of a cluster. This suggests 
unwarranted precision of the actual underlying test statis-
tic and can lead to very strong but unsubstantiated claims. 
The aim of this article is to demonstrate and exemplify the 
problems and common pitfalls of using and interpreting 
cluster‐based permutation tests. Our simulation reveals 
that individual time points at the beginning of a cluster are 
an unreliable estimate for the actual onset of differences 
between conditions. Additionally, in our case, >20% of 
the time the onset of the effect was estimated earlier then 
the true effect. This is corroborated by the architecture of 
this procedure: while there is multiple comparison con-
trol for establishing a significant difference between con-
ditions, there is no such control for the individual time 
points included in a cluster. This means that any statement 
about a specific time point is misleading, and such state-
ments should not be included when reporting the analysis. 
To foster accurate interpretation and unambiguous report-
ing of the outcome of cluster‐based permutation tests, we 
suggest reporting an approximate but clearly descriptive 
time window of a cluster. A statement about significance 
can only be made for the overall statistical contrast (e.g., 
“The cluster‐based permutation test indicated that there 
was a significant difference between conditions A and 

F I G U R E  1   Left: Distribution of earliest time points included in any significant clusters, and ground truths (red line). Kernel density estimate 
and histogram are shown. Significant‐cluster margins do not track real onsets well. Right: Cumulative error rates, per degree of divergence, for each 
level of underestimation of effect latency. Red line indicates 5% level
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B”). Reporting the extent of the cluster is recommended 
only if the descriptive nature of this information is made 
explicit (e.g., “A cluster in the observed data extended 
from approximately 180 to 250 ms”). We hope that ac-
curate interpretations of cluster‐based permutation tests 
will contribute to the adequate utilization of this powerful 
method.
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